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a b s t r a c t

In this study, a spiking cortical model (SCM) based n-g discrimination method is proposed. The SCM-
based algorithm is compared with three other methods, namely: (i) the pulse-coupled neural network
(PCNN), (ii) the charge comparison, and (iii) the zero-crossing. The objective evaluation criteria used for
the comparison are the FoM-value and the time consumption of discrimination. Experimental results
demonstrated that our proposed method outperforms the other methods significantly with the highest
FoM-value. Specifically, the proposed method exhibits a 34.81% improvement compared with the PCNN,
a 50.29% improvement compared with the charge comparison, and a 110.02% improvement compared
with the zero-crossing. Additionally, the proposed method features the second-fastest discrimination
time, where it is 75.67% faster than the PCNN, 70.65% faster than the charge comparison and 38.4%
slower than the zero-crossing. Our study also discusses the role and change pattern of each parameter of
the SCM to guide the selection process. It concludes that the SCM's outstanding ability to recognize the
dynamic information in the pulse signal, improved accuracy when compared to the PCNN, and better
computational complexity enables the SCM to exhibit excellent n-g discrimination performance while
consuming less time.
© 2023 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The neutron detection technique is a critical component of many
modern industrial areas, such as reactors [1], medical imaging [2],
geography [3], irradiation facilities [4] and the aerospace industry
[5]. However, capturing neutron signals is challenging for quite a
long time due to the accompanying gamma-rays resulting from the
interaction between neutrons and their surroundings. Radiation
detectors, when deployed to detect neutrons, capture n-g pulse
signals simultaneously, making it challenging to distinguish
whether the radiation signal counts originate from neutrons or
gamma-rays. To address this challenge, Brooks [6] discovered an
intrinsic difference in the shapes of n-g pulse signals retrieved by
organic detectors. This difference makes it possible to discriminate
neutrons and gamma-rays by their pulse signals. This discovery led
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to the development of pulse shape discrimination (PSD) [7,8],
various detectors that can work in different situations have been
developed [9,10], and many discrimination methods of neutrons
and gamma-rays have been proposed like zero-crossing method
[11], charge comparison method [12] and falling edge percentage
slope method [13]. All these discrimination methods can be
generally categorized into time-domain, frequency-domain, and
intelligent methods.

Generally, attributed to the better capability of capturing the
dynamic information inside the pulse signals, intelligent methods
tend to outperform time-domain as well as frequency-domain
methods regarding the discrimination performance, but are more
time-consuming due to the matrix computation and training they
require. Recently, Liu et al. proposed a pulse-coupled neural
network (PCNN)-based discrimination method that performs
exceptionally well and exhibits comparable time consumption
levels to time-domain methods [14]. Their work demonstrated the
outstanding discrimination and anti-noise abilities of the PCNN
when applied to the PSD. However, this algorithm requires several
manually set parameters, which can affect its performance.
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To solve this problem, we introduce the spiking cortical model
(SCM) into the n-g discrimination field, which is a simplified PCNN
model. It is derived from the PCNN and has much fewer parameters
as well as improved computational complexity and discrimination
performance. To demonstrate the discrimination effect of the pro-
posed method, experiments were conducted on the data of an n-g
superposed field, which is retrieved by a plastic scintillator (EJ299-
33) and a digital oscilloscope (TPS2000B). This signal retrieve
equipment was set with a bandwidth of 200 MHz, a sampling rate
of 1 GS=s, a trigger threshold of 500mV and a 160 ns pulse duration
which does not bury the information inside signal respecting the
Shannon criteria [15]. The experimental results of our proposed
method were compared with the other methods, which are the
PCNN, charge comparison, and zero-crossing. Subsequently, we
elucidated the relationship between the SCM's dynamic properties
and its discrimination performance, analyzed the role of each
parameter of SCM, and presented a detailed parameter selection
strategy.

This study is organized as follows: First, the principles of all
discrimination methods used in this work are presented in Section
2. Then, in Section 3, we illustrate the evaluation criteria used for n-
g discrimination. In Section 4, we conduct experiments and eval-
uate the experimental results of different discrimination methods,
and discuss the role of each SCM parameter. Finally, we present our
conclusions in Section 5.
2. Fundamentals of discrimination methods

2.1. Pulse-coupled neural network

Pulse-coupled neural network is a bio-inspired neural network
based on Eckhorn's cortical model. It is derived from the research
on interactions between cell assemblies in cat's primary visual
cortex [16], introduced by Johnson et al., in 1994 for imaging pro-
cessing [17,18]. Differ from common neuron networks (deep
learning models), the PCNN does not need the pre-training process
to form the relationship between input and output data. On the
contrary, the PCNN works in a way that is like real biological neu-
rons, using the change of action potentials when neurons receive
stimuli to solve the problem of scene analysis [19]. PCNN has
developed rapidly in the past few decades in the imaging pro-
cessing areas, such as the feature extraction [17], image segmen-
tation [18], pattern recognition [20], object recognition [21,22], and
image shadow removal [23]. There are three major domains in the
PCNN, which are the accepted, modulation, and pulse generator
domains, and the accepted domain is further divided into two
parts: link input (LI) and feedback input (FI). The FI makes a main
contribution to the action potential of a neuron while the LI
modulate it. When the action potential of a neuron exceeds its
dynamic threshold, this neuron is activated, and a spike is gener-
ated. The mathematical expression are as follows [24]:

F ij½n� ¼ e�aFF ij½n�1� þVF
X
kl

MijklYkl½n�1� þ Sij (1)

Lij½n� ¼ e�aLLij½n�1� þ VL

X
kl

W ijklYkl½n�1�; (2)

U ij½n� ¼ F ij½n�
�
1þ bLij½n�

�
; (3)

Y ij½n� ¼
�
1;U ij½n�> qij½n�
0;otherwise

(4)
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qij½n� ¼ e�aqqij½n�1� þ VqY ij½n�1�; (5)

where the internal activity of a neuron located at the position ði; jÞ
U ij is determined by the feedback input F ij and link input Lij, which
are coupled by a factor named linking strength b. n is the iteration
count. aF and aL denote the decay time constants of FI and LI,
respectively. VF and VL represent the amplification coefficients of FI
and LI, respectively. For a central neuron in the position ði; jÞ, it is
connected with neighboring neurons located at ðk; lÞ through
constant synaptic weight matrixes W and M. Sij is the input stim-
ulus. qij is the dynamic threshold of a neuron in the location ði;jÞ, aq
is the decay time constants of the dynamic threshold, and Vq de-
notes the amplification coefficients of the dynamic threshold. Y ij is
the timing pulse sequence that determines whether a neuron
located at ði; jÞ should be fired (U ij½n�> qij½n�, Y ij½n� ¼ 1) or not
(U ij½n� � qij½n�, Y ij½n� ¼ 0).

In [14], Liu et al. introduced the PCNN into the n-g discrimina-
tion filed for the first time, demonstrating its capacity to capture
the dynamic information inside the radiation pulse signals, which
makes it capable of discriminating neutrons and gamma-rays pulse
signals effectively. Feed the PCNN with a radiation pulse signal, an
ignition map could be generated, which is a same size vector as the
pulse signal. The ignition times of n-g pulse signals are different in
the falling edge and delayed fluorescence parts because of the
intrinsic difference between their pulse shapes. By summing up the
corresponding parts of the ignition map, the n-g pulse signals can
be separated. Besides, the integration of ignition times of gamma-
ray signals is less than that of neutron signals.
2.2. Charge comparison

Charge comparison [25], as a widely used method in n-g
discrimination, is generally applied in many industrial fields
attributed to its efficiency and stability of discrimination. This
method is based on the different interaction features of neutrons
and gamma-rays when they penetrate the sensitive volume of a
radiation detector, i.e., the charge ratio R of a neutron is different
from that of a gamma-ray photon. Subsequently, by calculating the
charge ratio R, Hawkes et al. successfully discriminated n-g pulse
signals [26]. The formula of R is given as follows:

R¼ QN

QM
(6)

where QN represents the integration of the voltage of the slow
component of a pulse signal, while QM is the integration of the
voltage of the whole signal. Account to the longer decay time of the
falling edge of the neutron signals as well as the delayed fluores-
cence of neutrons, the R-value of neutrons is larger compared with
the gamma-rays.
2.3. Zero-crossing

In the Zero-crossing method [27,28], the pulse shape informa-
tion is carried by a criterion called zero-crossing time, which can be
calculated by transforming a neutron or gamma-ray pulse signal to
a bipolar pulse. The time interval between the beginning of the
bipolar pulse and the zero-crossing point of it is the zero-crossing
time. With regard to the transformation to a bipolar pulse signal,
M. Nakhostin [29] proposed a digital CR� RC2 filter, the recursive
form of which is derived from calculating the Z-transfer function of
it. The recursive formula of the bipolar signal can be expressed as
follows:



Fig. 1. Schematic of the spiking cortical model. The SCM has three essential compo-
nents: the membrane potential ~U , the output action potential ~Y , and the dynamic
threshold ~Q, which are all closely interlinked; changes in any of these components
affect the others. ~U and ~Q are partly decided by their values in the previous iteration,
while ~U is also influenced by ~Y and ~S. ~Q is modulated by ~Y, while ~Y directly depends
on the relative size of ~U and ~Q.

Fig. 2. Process of high intensity and low intensity of stimuli. For two equal threshold
intervals D ~q1 and D ~q2, the processing time of high stimulus Dt1 is much shorter than
that of low stimulus Dt2, indicating that the SCM is also more sensitive to low intensity
rather than high intensity.
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where x is the pulse signal of neutron or gamma-ray, y denote the
filtered pulse i.e., the bipolar signal, n represent the sample index,
and d and u are constants decided by

d¼ e
�T
�
t (8)

u¼1
t

(9)

where T is the sampling interval of the pulse signal, and t ¼ RC
represents the shaping time.10% of the pulsemaximum is set as the
start time and the first sample after the pulse's peak that below
zero is set as zero-crossing time. Since the falling edge of gamma-
ray pulse signals is steeper than that of neutron pulse signals, the
zero-crossing time of gamma-rays is shorter than neutrons.

2.4. Spiking cortical model

Zhang et al. (2018) introduced the spiking cortical model (SCM),
a neural network model that is a derivative of the PCNNmodel [30].
SCM has an advantage over PCNN and other PCNN-derived
methods such as the intersecting cortical model due to its charac-
teristics of having fewer parameters, lower computational
complexity, and higher accuracy. These advantages make it widely
applicable in image processing areas such as image segmentation
[31], where it has displayed excellent performance. Similar to bio-
logical neurons, the membrane potential of a neuron in SCM is
calculated by a combination of direct stimulation and synaptic
modulation exerted by neighboring neurons. When the membrane
potential of a neuron surpasses its dynamic threshold, it generates a
spike, which further affects neighboring neurons in the next iter-
ation. The mathematical description of the SCM is given as follows:

~U ijðnÞ¼ f ~U ijðn�1Þ þ ~Sij

 
1þ

X
kl

~W ijkl
~Yklðn� 1Þ

!
(10)

~Y ijðnÞ¼

8><
>:

1; if
1

1þ exp
�� �UijðnÞ � qijðnÞ

		>0:5

0; otherwise

(11)

~QijðnÞ¼ g ~Qijðn�1Þ þ h~Y ijðnÞ (12)

where n represents the iteration count, ~U ijðnÞ denotes the mem-
brane potential of a neuron in the location ði; jÞ at iteration n, f is the
attenuation constant of the membrane potential, ~Sij represents the

external stimulus, ~W ijkl denotes the synaptic weight matrix which
affects the connection between a neuron in location ði; jÞ and its
neighboring neurons in location ðk;lÞ, ~Y stands for the output action
potential (i.e. the output spike) of a neuron, the convolution of ~W ijkl

and ~Yklðn�1Þ represents the modulation on the central neuron

located at ði; jÞ by its neighboring neurons in location ðk;lÞ, ~Qij is the
dynamic threshold of a neuron in location ði; jÞ, g and h are the
attenuation constant of the threshold and the absolute refractory
period respectively, which prevents neurons that just been
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activated from being reactivated immediately.
Intuitively, as shown in Fig. 1, there are three important parts in

the SCM: the membrane potential ~U , the output action potential ~Y ,

and the dynamic threshold ~Q. These parts are closely connected,
the changing of each of them will affect others. The potentials of ~U

and ~Q are partly decided by the potentials of themselves in the last
iteration respectively. Additionally, ~U is affected by ~Y and the

external stimulus ~S. On the other hand, ~Q is modulated by ~Y, while
~Y directly depends on the size relationship between the membrane

potential ~U and the dynamic threshold ~Q.
According to the Weber-Fechner law [32], a psychophysics law

that describes the human visual system, the subjective sense of the
intensity ~I is related to the time matrix ~T , with the human visual
system being more sensitive to low intensity rather than high in-
tensity. Fig. 2 illustrates the situation whereby the SCM receives a
high-intensity stimulus and a low-intensity one. When comparing

two intervals with equal thresholds, D ~q1 and D ~q2, it is evident that
the processing time of a high-intensity stimulus Dt1 is significantly
shorter than that of a low-intensity stimulus Dt2. This indicates
that, similar to the human visual system, the SCM is also more
sensitive to low intensity than to high intensity.

In 2021, Liu et al. validated the application of PCNN on n-g



Fig. 4. n-g discrimination evaluation criteria. The evaluation criteria FoM-value is
calculated by Eq. (16), comprising of three parts that are shown in this figure (S,
FWHMn , and FWHMg). A larger FoM-value indicate a better discrimination
performance.
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discrimination [14]. They found that the dynamic information in-
side the pulse signals can be effectively captured by the PCNN,
which is extremely essential to its outstanding discrimination
performance. When the SCM is applied to discriminate n-g pulse
signals, it processes the radiation pulse signals by generating an
ignition map that shows the ignition counts of each pulse signal
sampling point, as shown in Fig. 3. From these figures, it is evident
that the primary difference between the shape of n-g pulse signals
is the steepness of the falling edge and whether there is delayed
fluorescence. Specifically, the falling edge of gamma-ray is steeper
than that of the neutron, and the delayed fluorescence is a unique
characteristic of neutrons. These two differences can be distin-
guished by the SCM and are clearly magnified in the ignition map.
By integrating the corresponding parts of the ignition map that
contained the information of the falling edge and the delayed
fluorescence, the n-g pulse signals can be accurately discriminated.
Note that the integration of neutrons is larger than that of gamma-
rays.

3. Evaluation criteria

To analyze the results of different n-g discrimination methods,
two objective discrimination measures are utilized in this work,
which are the figure of merit (FoM) and the time consumption of
discrimination (discrimination time, defined as the CPU time
required to discriminate all radiation pulse signals). To calculate the
FoM-value, the histogram of n-g counts need to be drawn, and then
a Gaussian fitting function is used to form the curves of the neu-
trons and gamma-rays, as shown in Fig. 4. The FoM is defined as
[33]:

FoM¼ S
FWHMn þ FWHMg

(16)

where the distance between two peaks of the neutrons and
gamma-rays is denoted by S, the full width at half maximum of
neutron and gamma-ray curves are represented by FWHMn and
FWHMg, respectively. A shorter discrimination time and a larger
FoM-value indicate a better discrimination performance.

4. Experiment

4.1. Discrimination results

4.1.1. Parameter settings
The optimized values of parameters of the PCNN are: n ¼ 180,

aF ¼ 0:32, aL ¼ 0:356, aq ¼ 0:08, VF ¼ 0:0005, VL ¼ 0:0005, Vq ¼
15,M ¼ N ¼ ½0:1409;0;0:1409�, b ¼ 0:67. The integration interval
Fig. 3. Comparison of normalized neg pulses and their ignition maps. (a) The n-g pulse sig
SCM on the n-g pulse signals. The difference between neutron and gamma-ray in (a) can
showing that the inherent differences between n-g pulses in the falling edge and the delay
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of an ignition map is selected as between 10 ns before the peak of a
pulse signal and 120 ns after it.

Regarding the charge comparison method, the total component
is selected between 15 ns before the peak of a pulse signal and 200
ns after it, and the slow component is composed of an interval
between 7 ns before and 200 ns after the peak of a pulse signal.

For the zero-crossing method, T ¼ 1 ns and t ¼ 72 ns.
The parameters of the SCM are set as: n ¼ 36, f ¼ 0:8, g ¼

0:704, h ¼ 18:2, ~W ¼ ½0:44;0;0:44�.The interval between 5 ns
before the peak of a pulse signal and 125 ns after the peak of a pulse
signal is selected as the integration interval of an ignition map.
4.1.2. Experimental results evaluation
In this work, a241AmeBe isotope neutron source whose average

energy is 4.5MeV is used to generate the neutrons and gamma-ray
superposed field. The radiation pulse signals are retrieved by a
plastic scintillator (EJ299-33) and a digital oscilloscope (TPS2000B),
which was set with a bandwidth of 200 MHz, a sampling rate of 1
GS=s, a 160 ns pulse duration, and a trigger threshold of 500 mV ,
corresponding to an energy of 1.6 MeVee approximately (the defi-
nition of MeVee is given in Ref. [14]). Based on this setup, 9414 n-g
pulse signals are retrieved, the pulses shape of which are drawn in
Fig. 3A. Clearly, the luminous attenuation rate of the neutron is
distinctly slower compared with the gamma-rays, accounting for
the longer decay time of neutrons and the unique characteristic
nals. (b) The ignition maps of n-g pulse signals, which are generated by implementing
be distinguished by the SCM and are significantly magnified in the ignition map (b),
ed fluorescence are successfully captured by the SCM.
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that neutron has, the delayed fluorescence [34].
Before the discrimination process, all n-g pulse signals need to

be filtered by the Fourier transform [35] to reduce the noise. Notice
that there are many different filtering methods in the n-g
discrimination fields such as wavelet transform [36,37], Kalman
filter [38], and sliding average filter [39], and different filtering
methods coupled with different discrimination methods could
exhibit different discrimination performance [12,40]. Because the
main discussion topic in this work is irrelevant to the filtering
methods, we chose the most commonly used filtering method, the
Fourier transform, to apply to all discrimination methods used in
this study. Then, the filtered n-g pulse signals can be discriminated
by four methods mentioned in Sect.2, processed on an AMD R9-
5900X CPU. The results are given in Fig. 5.

Fig. 5a is the scatter plot of the pulse signals counts of neutrons
and gamma-rays, discriminated by the aforementioned four
discrimination methods, where discrimination results of the n-g
pulse signals are divided into two groups of dots by a crossing line,
the dots below it are recognized as the gamma-ray signals and the
dots above it are recognized as the neutron signals. Notice that the
discrimination factors of different discrimination methods are
normalized to the range 0e40, whereas there are a few signals that
deviated from the Neutron counts group too far away in the results
of Charge comparison method; hence we move the range of the
Charge comparison method from range 0e40 to approximately
range 10e50, aiming to achieve a universal crossing line that can
cross over the gaps between neutron and gamma-ray groups of all
discrimination methods. For the situation of good discrimination
performance, the group of gamma-ray dots and the grout of
neutron dots should be as separated from each other as possible,
and each group should be distributed centrally while exhibiting a
clear Gaussian distribution at the same time. It is noted that the
performances of the PCNN and SCM significantly outperform that of
the zero-crossing method and charge comparison method, with a
clear gap between the groups of neutrons and gamma-rays. Be-
sides, the group of dots of n-g pulse signals counts of these two
methods are distributed noticeably centralized and maintain the
characteristic of Gaussian distribution, with very few discrete dots
between the two groups or on the outside.

Fig. 5b shows the Gaussian fitting of the histograms of the
discrimination results of different methods, which are used to
calculate the FoM-value of eachmethod. Furthermore, they provide
an intuitive view of the discrimination performance. A good
Fig. 5. The discrimination results. (a) Scatter plot of the discrimination results of four meth
dots by a crossing line, the dots below it are recognized as the gamma-ray signals and the do
performance, the group of gamma-ray dots and the grout of neutron dots should be as separ
exhibiting a clear Gaussian distribution at the same time. (b) Gauss fitting curves for the h
FoM-value of each method, while it can also give an intuitive view of the discrimination perfo
two bands, and (ii) the full-width at half-maximum of each band is narrow.
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discrimination effect is characterized by (i) awide gap between two
bands, and (ii) a narrow FWHM. It is necessary to mention that the
discrimination factor generated by each method used to create the
histogram varies due to internal principles, leading to different
histogram bin counts and thus varying Y-axis values. However, Y-
axis values are irrelevant to the discrimination effect and are only a
byproduct used to present all method results in one figure. Analysis
of the figure reveals that the discrimination effect of the PCNN and
SCM is noticeably better than that of other methods, with clear,
wide gaps between their bands and narrow FWHM widths.

To further tell the difference between the performance of the
PCNN and SCM, objective evaluation criteria are needed. The
FoM-value of every method was calculated and presented in
Table 1, along with the discrimination time (the total time con-
sumption of processing the 9414 pulse signals) of each of them. The
neutron and gamma-ray counts of each discrimination method are
also provided to demonstrate that pulse signals were not wrongly
discriminated because the signal categorization results are gener-
ally consistent throughout all discrimination methodologies.

As shown in Table 1, it is consistent with the subjective evalu-
ation results made by using Fig. 5 that the discrimination perfor-
mance of the PCNN and SCM is significantly better than that of
zero-crossing method and charge comparison method, with
clearly larger FoM-values. The discrimination effect of the SCM
outperforms that of the others, which has a 34.81% improvement in
the FoM-value and an outstanding 75.67% improvement in the
discrimination time compared with the PCNNmethod, a significant
50.29% improvement in the FoM-value and 70.65% improvement in
the discrimination time compared with the charge comparison
method, and an excellent 110.02% improvement in the FoM-value
and 38.4% longer discrimination time compared with the zero-
crossing method. This astonishing performance is attributed to
the accuracy and computational improvement of the SCM
comparedwith the PCNNmodel on the one hand. And on the other,
their iteration counts of them are different which have a great effect
on the time consumption of discrimination. Although the PCNN
model performs well when it is applied to the two-dimensional
image processing, its complex design makes it needs more itera-
tion count to capture the information contained in the data fed to it,
while the SCM, as a simplified model, needs much less iteration
count especially when the data it needs to process is a one-
dimensional matrix like a radiation pulse signal.
ods. The discrimination results of the n-g pulse signals are divided into two groups of
ts above it are recognized as the neutron signals. For the situation of fine discrimination
ated from each other as possible, and each group should be distributed centrally while
istogram of different discrimination methods. The histogram is used to calculate the
rmance. A good discrimination effect holds two characteristics: (i) a wide gap between



Table 1
Discrimination results and evaluation.

Discrimination method PCNN Charge comparison Zero-crossing SCM

Discrimination time 2.22 s 1.84 s 0.39 s 0.54 s
Discrimination effect (FoM) 1.709 1.533 1.097 2.304
Neutron count 2056 2092 2742 2071
Gamma-ray count 7358 7322 6672 7343
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4.2. Parameters of the SCM

Compared with the PCNN, the number of parameters of the SCM
is much lesser, but these parameters still affect the discrimination
performance. Consequently, the discussion of the parameter se-
lection scheme is necessary. The variation curve of the FoM-value
when one parameter is changed while others remain the values
mentioned in Sec. 4.1.1 is drawn in Fig. 6.

As shown in Fig. 6, by selecting appropriate parameters, the
FoM-value can be easily stabilized between 1.5 and 2.3, indicating
that the SCM does not heavily rely on parameter settings to achieve
a good discrimination performance. For the iteration count n, as
shown in Fig. 6a, the variation curve of the FoM-value by it shows
obvious periodic fluctuation, and the peak value of the fluctuation
curve is greater when the number of iterations is lower. The reason
for such a pattern is that with the increase of iterations, the general
action potential of each neuron is initially climbing and then in-
clined to stabilization, which means the action potential is more
dependent on the external stimuli firstly and then becomes more
dependent on the neurons’ action potentials in former iterations.
Regarding the n-g discrimination, the information contained in the
external stimuli is more important and the modulation of affection
from potential in its last iteration should be not too large, hence the
small value of the iteration count should be taken. For the attenu-
ation constant of the threshold g, as shown in Fig. 6b, which decides
the attenuation speed of the threshold and affect the frequency of
activation of a neuron, the variation curve of the FoM-value by it
also exhibits a pattern of periodic fluctuation, the value of it can be
Fig. 6. The variation curve of the FoM-value by different parameters. In general, the variation
range and the performance of discrimination would be very bad when the parameters are
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chosen at the peaks of the curve. For the attenuation constant of the
membrane potential f , as shown in Fig. 6c, there is an optimal range
of values around 0.8. f controls the attenuation speed of the
membrane potential of a neuron, if the value of it is too large, the
contribution of the potential comes from the last iterationwould be
too little, and vice versa. Consequently, an optimal range of f is in
the middle.

For the synaptic weight matrix ~W , as shown in Fig. 6d, which
controls the connection between the central neuron and its
neighbors, the variation curve of the FoM-value by it has an overall
tendency to decline when the value of ~W is too far from 0.44. The
value of ~W has a large effect on the contribution of the membrane
potential U by neighboring neurons, which decides the proportion
of external stimuli in U . As we have mentioned before, the contri-
bution of external stimuli S is very important to the n-g discrimi-
nation and it needs to be dominant in U , and although the
modulation of the neighboring neurons is also important to the
information retrieving of SCM, the level of modulation should not
be too large to over the external stimuli nor too little to abandon the
effect of modulation, so the performance is good when the value of
~W locates in themiddle. Finally, for the absolute refractory period h,
as shown in Fig. 6f, the variation curve of the FoM-value by it rises
drastically at the first and then tends to be stable after 18. This

parameter decides the characteristic of dynamic threshold ~Q,
which makes an activated neuron not be activated again immedi-
ately, the value of it should be selected larger in a reasonable range.

In general, the variation curve of the FoM-value by many pa-
rameters shows periodic fluctuation in a reasonable range and the
curve of the FoM-value by many parameters shows periodic fluctuation in a reasonable
selected too extreme and out of the reasonable range.
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performance of discrimination would be very bad when the pa-
rameters are selected too extreme and out of the reasonable range.
The reason for this appearance is that different parts of the SCM are
closely connected, if the characteristic of one-part changes too far, it
would affect others and cause others to modulate this part to work
properly, which leads to the periodic fluctuation. However, when
the value of a parameter is too extreme to maintain the connected
and mutually modulated relationship between different parts of
the SCM, the discrimination performance of the SCMwould decline
dramatically. The appropriate parameters of the SCM can be
selected by using the above parameter change pattern to achieve a
good n-g discrimination performance.

5. Conclusion

This study proposed the SCM-based neutrons and gamma-rays
discrimination method and compares it with three other
methods: the pulse-coupled neural network (PCNN), charge com-
parison and zero-crossing. The radiation pulse signals from a
neutron and gamma-ray superposed field used in our work were
generated by a241AmeBe isotope neutron source, detected by a
plastic scintillator (EJ299-33), and processed on an AMD R9-5900X
CPU. The experimental results demonstrated that the proposed
method exhibits exceptional discrimination performance and out-
performs the others. Specifically, it delivers the highest FoM-value
(34.81% improvement compared with the PCNN, 70.54% improve-
ment compared with the charge comparison, and 110.02%
improvement compared with the zero-crossing) and the second-
fastest discrimination time (75.67% improvement compared with
the PCNN, 59.95% improvement compared with the charge com-
parison, and 38.4% slower than the zero-crossing). The SCM's
breakthrough discrimination performance is due to its capability to
recognize dynamic information in pulse signals - a crucial metric
for neutrons and gamma-rays discrimination. This performance is
enhanced by its improved accuracy and computational complexity
compared to the PCNN. The SCM's excellent discrimination effect
makes it applicable to many fields requiring accurate discrimina-
tion of neutrons and gamma-rays, while its improved discrimina-
tion time demonstrates its potential to be used in real-time
discrimination scenarios. Thus, the SCM method has the potential
to enable high-quality real-time discrimination, similar to the zero-
crossing method.

In addition, the influence pattern of each parameter on the SCM
and the reason that caused this pattern are discussed. The variation
curve of the FoM-value by many parameters shows periodic fluc-
tuation if the value of the parameter is in a reasonable range, but if
not, the discrimination performance would noticeably decrease,
attributable to the interconnected and mutually modulated rela-
tionship between different SCM parts. In our future work, we will
further research the SCM parameters with the aim of designing an
auto-setting SCM model for the n-g discrimination.
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