• Title/Summary/Keyword: neural network.

Search Result 11,767, Processing Time 0.052 seconds

Development of Self-Tuning and Adaptive Fuzzy Controller to Control Induction Motor Drive (유도전동기 드라이브의 제어를 위한 자기동조 및 적응 퍼지제어기 개발)

  • Ko, Jae-Sub;Choi, Jung-Sik;Jung, Chul-Ho;Kim, Do-Yeon;Jung, Byung-Jin;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2009.04b
    • /
    • pp.32-34
    • /
    • 2009
  • The field oriented control of induction motors is widely used in high performance applications. However, detuning caused by parameter disturbance still limits the performance of these drives. In order to accomplish variable speed operation, conventional PI-like controllers are commonly used. These controllers provide limited good Performance over a wide range of operation, even under ideal field oriented conditions. This paper is proposed model reference adaptive fuzzy control(MFC) and artificial neural network(ANN) based on the vector controlled induction motor drive system. Also, this paper is proposed control of speed and current using fuzzy adaption mechanism(FAM), MFC and estimation of speed using ANN. The proposed control algorithm is applied to induction motor drive system using FAM, MFC and ANN controller. Also, this paper is proposed the analysis results to verify the effectiveness of this controller.

  • PDF

Emotional Interface Technologies for Service Robot (서비스 로봇을 위한 감성인터페이스 기술)

  • Yang, Hyun-Seung;Seo, Yong-Ho;Jeong, Il-Woong;Han, Tae-Woo;Rho, Dong-Hyun
    • The Journal of Korea Robotics Society
    • /
    • v.1 no.1
    • /
    • pp.58-65
    • /
    • 2006
  • The emotional interface is essential technology for the robot to provide the proper service to the user. In this research, we developed emotional components for the service robot such as a neural network based facial expression recognizer, emotion expression technologies based on 3D graphical face expression and joints movements, considering a user's reaction, behavior selection technology for emotion expression. We used our humanoid robots, AMI and AMIET as the test-beds of our emotional interface. We researched on the emotional interaction between a service robot and a user by integrating the developed technologies. Emotional interface technology for the service robot, enhance the performance of friendly interaction to the service robot, to increase the diversity of the service and the value-added of the robot for human. and it elevates the market growth and also contribute to the popularization of the robot. The emotional interface technology can enhance the performance of friendly interaction of the service robot. This technology can also increase the diversity of the service and the value-added of the robot for human. and it can elevate the market growth and also contribute to the popularization of the robot.

  • PDF

Improving the Water Level Prediction of Multi-Layer Perceptron with a Modified Error Function

  • Oh, Sang-Hoon
    • International Journal of Contents
    • /
    • v.13 no.4
    • /
    • pp.23-28
    • /
    • 2017
  • Of the total economic loss caused by disasters, 40% are due to floods and floods have a severe impact on human health and life. So, it is important to monitor the water level of a river and to issue a flood warning during unfavorable circumstances. In this paper, we propose a modified error function to improve a hydrological modeling using a multi-layer perceptron (MLP) neural network. When MLP's are trained to minimize the conventional mean-squared error function, the prediction performance is poor because MLP's are highly tunned to training data. Our goal is achieved by preventing overspecialization to training data, which is the main reason for performance degradation for rare or test data. Based on the modified error function, an MLP is trained to predict the water level with rainfall data at upper reaches. Through simulations to predict the water level of Nakdong River near a UNESCO World Heritage Site "Hahoe Village," we verified that the prediction performance of MLP with the modified error function is superior to that with the conventional mean-squared error function, especially maximum error of 40.85cm vs. 55.51cm.

Efficient Signal Detection Based on Artificial Intelligence for Power Line Communication Systems (전력선통신 시스템을 위한 인공지능 기반 효율적 신호 검출)

  • Kim, Do Kyun;Hwang, Yu Min;Sim, Issac;Kim, Jin Young
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.2
    • /
    • pp.42-45
    • /
    • 2017
  • It is known that power line communication systems have more noise than general wired communication systems due to the high voltage that flows in power line cables, and the noise causes a serious performance degradation. In order to mitigate performance degradation due to such noise, this paper proposes an artificial intelligence algorithm based on polynomial regression, which detects signals in the impulse noise environment in the power line communication system. The polynomial regression method is used to predict the original transmitted signal from the impulse noise signal. Simulation results show that the signal detection performance in the impulse noise environment of the power line communication is improved through the artificial intelligence algorithm proposed in this paper.

A Simple Power Management Scheme with Enhanced Stability for a Solar PV/Wind/Fuel Cell Fed Standalone Hybrid Power Supply using Embedded and Neural Network Controller

  • Thangavel, S.;Saravanan, S.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1454-1470
    • /
    • 2014
  • This paper propose a new power conditioner topology with intelligent power management controller that integrates multiple renewable energy sources such as solar energy, wind energy and fuel cell energy with battery backup to make best use of their operating characteristics and obtain better reliability than that could be obtained by single renewable energy based power supply. The proposed embedded controller is programmed for maintaining a constant voltage at PCC, maximum power point tracking for solar PV panel and WTG and power flow control by regulating the reference currents of the controller on instantaneous basis based on the power delivered by the sources and load demand. Instantaneous variation in reference currents of the controller enhances the controller response as it accommodates the effect of continuously varying solar insolation and wind speed in the power management. The power conditioner uses a battery bank with embedded controller based online SOC estimation and battery charging system to suitably sink or source the input power based on the load demand. The simulation results of the proposed power management system for a standalone solar/WTG/fuel cell fed hybrid power supply with real time solar radiation and wind velocity data collected from solar centre, KEC for a sporadically varying load demand is presented in this paper and the results are encouraging in reliability and stability perspective.

A Study on Emotion Classification using 4-Channel EEG Signals (4채널 뇌파 신호를 이용한 감정 분류에 관한 연구)

  • Kim, Dong-Jun;Lee, Hyun-Min
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.2 no.2
    • /
    • pp.23-28
    • /
    • 2009
  • This study describes an emotion classification method using two different feature parameters of four-channel EEG signals. One of the parameters is linear prediction coefficients based on AR modelling. Another one is cross-correlation coefficients on frequencies of ${\theta}$, ${\alpha}$, ${\beta}$ bands of FFT spectra. Using the linear predictor coefficients and the cross-correlation coefficients of frequencies, the emotion classification test for four emotions, such as anger, sad, joy, and relaxation is performed with an artificial neural network. The results of the two parameters showed that the linear prediction coefficients have produced the better results for emotion classification than the cross-correlation coefficients of FFT spectra.

  • PDF

Assessment of Wind Power Prediction Using Hybrid Method and Comparison with Different Models

  • Eissa, Mohammed;Yu, Jilai;Wang, Songyan;Liu, Peng
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.1089-1098
    • /
    • 2018
  • This study aims at developing and applying a hybrid model to the wind power prediction (WPP). The hybrid model for a very-short-term WPP (VSTWPP) is achieved through analytical data, multiple linear regressions and least square methods (MLR&LS). The data used in our hybrid model are based on the historical records of wind power from an offshore region. In this model, the WPP is achieved in four steps: 1) transforming historical data into ratios; 2) predicting the wind power using the ratios; 3) predicting rectification ratios by the total wind power; 4) predicting the wind power using the proposed rectification method. The proposed method includes one-step and multi-step predictions. The WPP is tested by applying different models, such as the autoregressive moving average (ARMA), support vector machine (SVM), and artificial neural network (ANN). The results of all these models confirmed the validity of the proposed hybrid model in terms of error as well as its effectiveness. Furthermore, forecasting errors are compared to depict a highly variable WPP, and the correlations between the actual and predicted wind powers are shown. Simulations are carried out to definitely prove the feasibility and excellent performance of the proposed method for the VSTWPP versus that of the SVM, ANN and ARMA models.

Hybrid Fuzzy Controller for DTC of Induction Motor Drive (유도전동기 드라이브의 DTC를 위한 하이브리드 퍼지제어기)

  • Ko, Jae-Sub;Choi, Jung-Sik;Chung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.5
    • /
    • pp.22-33
    • /
    • 2011
  • An induction motor operated with a conventional direct self controller(DSC) shows a sluggish response during startup and under changes of torque command. Fuzzy logic controller(FLC) is used in conjection with DSC to minimize these problems. A FLC chooses the switching states based on a set of fuzzy variables. Flux position, error in flux magnitude and error in torque are used as fuzzy state variables. Fuzzy rules are determinated by observing the vector diagram of flux and currents. This paper proposes hybrid fuzzy controller for direct torque control(DTC) of induction motor drives. The speed controller is based on adaptive fuzzy learning controller(AFLC), which provide high dynamics performances both in transient and steady state response. Flux position, error in flux magnitude and error in torque are used as FLC state variables. The speed is estimated with model reference adaptive system(MRAS) based on artificial neural network(ANN) trained on-line by a back-propagation algorithm. This paper is controlled speed using hybrid fuzzy controller(HFC) and estimation of speed using ANN. The performance of the proposed induction motor drive with HFC controller and ANN is verified by analysis results at various operation conditions.

High Control of Induction Motor Drive using Multi Adaptive Fuzzy Controller (다중 적응 퍼지제어기를 이용한 유도전동기 드라이브의 고성능 제어)

  • Choi, Jung-Sik;Ko, Jae-Sub;Jung, Chul-Ho;Kim, Do-Yeon;Jung, Byung-Jin;Chung, Dong-Hwa
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.404-407
    • /
    • 2009
  • The field oriented control of induction motors is widely used in high performance applications. However, detuning caused by parameter disturbance still limits the performance of these drives. In order to accomplish variable speed operation conventional PI-like controllers are commonly used. These controllers provide limited good performance over a wide range of operation even under ideal field oriented conditions. This paper is proposed adaptive fuzzy controller(AFC) and artificial neural network(ANN) based on the vector controlled induction motor drive system. Also, this paper is proposed control of speed and current using fuzzy adaptation mechanism(FAM), AFC and estimation of speed using ANN. The proposed control algorithm is applied to induction motor drive system using FAM, AFC and ANN controller. Also, this paper is proposed the analysis results to verify the effectiveness of this controller.

  • PDF

A study on the implementation of identification system using facial multi-modal (얼굴의 다중특징을 이용한 인증 시스템 구현)

  • 정택준;문용선
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.5
    • /
    • pp.777-782
    • /
    • 2002
  • This study will offer multimodal recognition instead of an existing monomodal bioinfomatics by using facial multi-feature to improve the accuracy of recognition and to consider the convenience of user . Each bioinfomatics vector can be found by the following ways. For a face, the feature is calculated by principal component analysis with wavelet multiresolution. For a lip, a filter is used to find out an equation to calculate the edges of the lips first. Then by using a thinning image and least square method, an equation factor can be drawn. A feature found out the facial parameter distance ratio. We've sorted backpropagation neural network and experimented with the inputs used above. Based on the experimental results we discuss the advantage and efficiency.