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ABSTRACT 

 

Of the total economic loss caused by disasters, 40% are due to floods and floods have a severe impact on human health and life. So, 

it is important to monitor the water level of a river and to issue a flood warning during unfavorable circumstances. In this paper, we 

propose a modified error function to improve a hydrological modeling using a multi-layer perceptron (MLP) neural network. When 

MLP’s are trained to minimize the conventional mean-squared error function, the prediction performance is poor because MLP’s 

are highly tunned to training data. Our goal is achieved by preventing overspecialization to training data, which is the main reason 

for performance degradation for rare or test data. Based on the modified error function, an MLP is trained to predict the water level 

with rainfall data at upper reaches. Through simulations to predict the water level of Nakdong River near a UNESCO World 

Heritage Site “Hahoe Village,” we verified that the prediction performance of MLP with the modified error function is superior to 

that with the conventional mean-squared error function, especially maximum error of 40.85cm vs. 55.51cm. 
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Perceptron, Deep Learning. 

 

 

1. INTRODUCTION 

 

Flood protection and forecasting have been focused 

because of its severe impact on the lives and properties in a 

wide area [1]-[4]. Accordingly, there have been many efforts to 

forecast flood or river flow which can be categorized into 

deterministic, conceptual, and parametric models [5]. 

Deterministic models use physical laws of mass and energy 

transfer to describe the relationship between rainfall and runoff 

or flood discharge. Conceptual models describe simplified 

representations of key hydrological process using a perceived 

system. Parametric models try to find mathematical transfer 

functions to relate several variables to runoff. In this point of 

view, neural network models belong to the parametric models 

[5]. 

Based on the mathematical proofs that multi-layer 

perceptron (MLP) neural networks can approximate any 

function with enough number of hidden nodes [6]-[8], neural 

networks have been widely applied in various fields such as 

fraud detection, pattern recognition, speech recognition, 

telecommunications, time series prediction, hydrology, etc [9]-

[12]. Furthermore, deep learning enlarges the application area 

to image understanding and language processing [13]. 

Especially, it is not necessary to elucidate complex mechanisms 
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of phenomena to be modeled by MLP’s, and this property 

expands hydrological modeling using MLP neural networks 

[5].  

Feng and Lu developed neural networks to forecast the 

peak stage in the lower reaches [2]. Atiya and Shaheen applied 

neural networks to the problem of forecasting the flow of the 

River Nile in Egypt with multi-step ahead predictions [14]. 

Dawson et al. predicted T-year flood events and the index flood 

for 850 catchments across the UK [15]. Wei et al. applied 

neural networks to predict the flood disaster area in China [16]. 

Rajurkar et al. modeled daily flows during flood events using 

neural networks [17]. Riad et al. showed that neural networks 

could model the rainfall-runoff relationship in a semiarid region 

in Morocco although there were extreme events such as floods 

and droughts with irregularity [18], [19]. Furthermore, Chua et 

al. combined neural networks with a kinematic wave approach 

for improving event-based rainfall-runoff modeling [20]. 

However, all these neural networks were trained based on the 

error back-propagation (EBP) algorithm to minimize mean-

squared error (MSE) function for training data [21]. Also, there 

have been efforts of applying recurrent neural networks to 

water level prediction [22], [23]. Still these methods try to 

minimize MSE functions for training data. 

In hydrological modeling, it is essential to predict the peak 

of hydrograph or water level [1]. On the contrary, given the 

nature of hydrological data, there is an imbalance of data in 

which low or medium level data are very much dominant than 

high-level data [1], [15]. When training neural networks to 
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minimize MSE, neural networks become highly tuned to the 

dominant training data with low or medium level and this 

overspecialization causes poor performance for the peak or test 

data [15]. In pattern recognition applications of neural 

networks, there have been reports that overspecializations 

degrade performance for test data and this can be prevented 

through modified error or objective functions [24], [25]. Also, 

algorithmic level approaches were attempted to improve the 

classification performance for heavily imbalanced data [26], 

[27]. Although these methods were successful in classifications, 

they cannot be adopted in hydrological modeling since target 

values in classification problems are not continuous but 

discrete. 

In this paper, we propose a modified error function to 

improve the performance of water level prediction through 

preventing overspecialization for the dominant training data. 

This purpose is achieved by weak updating of weights when 

MLP outputs are near their desired values. UNESCO concluded 

the “Convention Concerning the Protection of the World 

Cultural and Natural Heritage” in 1972 for national and 

international protection activities of world heritages. Among 

many UNESCO world heritage sites in Korea, “Hahoe Village” 

in Andong region is adjacent to Nakdong River and, therefore, 

the water level near the village should be carefully monitored 

for protection from flooding. So, we simulate the proposed 

method to predict the water level of Nakdong River near 

“Hahoe Village” with rainfalls at the upper reaches. In section 

2, we briefly introduce MLP neural networks and its EBP 

training algorithm. Also, we propose a modified error function 

for preventing overspecialization. In section 3, the hydrological 

modeling of rainfalls and water level near “Hahoe Village” is 

described and verified through simulations of the proposed 

mehod with real data. Finally, section 4 concludes this paper. 

 

 

2. ERROR BACK-PROPAGATION ALGORITHM WITH 

A MODIFIED ERROR FUNCTION 

 

2.1 Error Back-Propagation Algorithm 

Consider an MLP consisting of N inputs, H hidden nodes, 

and M output nodes, as shown in Fig. 1. When a p-th training 
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Here, jiw denotes the weight connecting ix  to jh , 0jw is 

a bias, and tanh(.) is the sigmoidal activation function of hidden 

node. We usually adopt the sigmoidal activation function of 

output node for classification problems, in which desired values 

of output nodes are in two extremely saturated regions of the 

sigmoid function [21]. If we want to generate “warning-no 

warning signal” for flood forecasting, it belongs to 

classification problems [1]. However, our goal is to predict the 

water level near “Hahoe Village” which is a real number above 

zero, and we adopt a linear function as an activation function of 

output node. Consequently, the k-th output node with a linear 

activation function is given by 
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Also, 0kv  is a bias and kjv  denotes the weight connecting 

jh  to ky .  

 

 

Fig. 1. The architecture of a multilayer perceptron. 
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measure between the actual and desired outputs, the mean-

squared error (MSE) function for P training data is defined by 
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To minimize E, according to the negative gradient of 

MSE, output weights kjv ’s are iteratively updated by 

 

,)()( p

j

p

k

kj

kj h
v

E
v  




                        (4) 

 

where  

 

( ))()(

)(

)(
==

p
k

p
kp

k

p
k yt

y

E
δ -

∂

∂
-                         (5) 

 

is the error signal of output node and   is the learning rate. 

Also, by the backward propagation of the error signal, hidden 

weights jiw ’s are updated by 
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In Eq. (6), the error signal of output node is back-

propagated through output weight kjv . The above weight-

updating procedure for training of MLP is the EBP (error back-

propagation) algorithm [21]. 

 

2.2 Modified Error Function for Preventing Over-

specialization 

During the learning process, the direction of weight update 

for reducing an error associated with a specific input will assist 

or compete with that for reducing total error [28]. For instance, 

some output nodes are pushed away from desired values by 

competition in the network. In this case, a strong error is 

necessary for output nodes far from desired values [29]. For 

output nodes near desired values, a weak error signal needs to 

be generated so that the weight update associated with a 

training data scarcely perturb the weights trained for whole 

training data [24]. Above all, training a network too much to 

minimize error may mean the network has become highly tuned 

to the training data leading to an inability to generalize [15]. 

Furthermore, this overspecialization for training data degrades 

performance for rare data such as peak values. For preventing 

overspecialization of learning, the weak error signal also must 

be generated for output nodes near desired values, like the 

classification figure of merit method [25]. 

 

 

Fig. 2. Error signals ( s'
)( p

kδ ) using MSE and the modified 

error function with n=4 when the desired value is ‘1’ 

 

In this sense, we propose the modified error function 
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where n is an even number. Using the above error function, the 

error signal of output node is 
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The other equations in the EBP algorithm are the same. As 

shown in Fig. 2, the proposed error signal can satisfy the above 

criterion, which requests a weak error signal for output node 

near desired values and a strong error signal for output node far 

from desired values.  

 

 

3. HYDROLOGICAL MODELING NEAR “HAHOE 

VILLAGE” 

 

3.1 Hahoe Village 

 

 
Fig. 3. The map of Andong region. Red circles indicate the 

locations of water level gauge at “Gudam” and rainfall gauges 

at “Pungsan,” “Iljik,” and “Andong” 

 

Fig. 3 is a map of Andong region, in which Nakdong River 

flows from east of Andong to “Hahoe Village.” Red circles in 

Fig. 3 indicate the locations of water level gauge at “Gudam” 

and three rainfall gauges at “Pungsan,” “Iljik,” and “Andong.” 

Since there is not a water level gauge at “Hahoe Village” and 

the nearest one is the gauge at “Gudam,” we select the gauge at 

“Gudam” to monitor the water level near “Hahoe Village.” 

Also, the rainfalls at “Pungsan” and “Iljik” should be 

considered for the hydrological modeling, since there are 

tributary rivers from the two locations to Nakdong River [30].  

 

 
(a) 

 
(b) 

 

Fig. 4. Collected data in 2012. (a) Water level at “Gudam” (WL 

Gudam2012), (b) Rainfalls at “Andong” (RF Andong2012), 

“Pungsan” (RF Pungsan2012) and “Iljik” (RF Iljik2012) 

 

Avoiding the winter season of icing and snowing, the data 

at each gauge is collected from March 1st to November 30th in 

the year of 2012, 2013, and 2014 with the interval of one hour. 
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So, there are 6,600 records in each year. The total data was 

provided by “Nakdong River Flood Control Office” and “Korea 

Water Resource Corp” [30]. We use the data in 2012 and 2013 

to train MLP’s for the hydrological modeling and the other to 

test the performance of water level prediction. Fig. 4 shows the 

water level and rainfalls in the year of 2012, in which we can 

find many irregularities between the water level and the 

rainfalls. For easy readability of the horizontal axis, we include 

the index “month/day” just above the data index on the 

horizontal axis in Fig. 4(a). 

 

3.2 Predicting the Water Level with the Modified Error 

Function 

In order to predict the water level at “Gudam” after D 

hours, we construct an MLP whose input layer consists of the 

water level at “Gudam” and the rainfalls at “Pungsan”, “Iljik”, 

and “Andong” from current (denoted by “c”) to previous c-L 

hours [17], [30]. When deciding the parameter values in 

MLP’s, we usually adopt the method of trial and error since 

there is not a concrete theoretical guidance. Accordingly, we 

determine that L is two and the number of hidden nodes is forty 

through many trials and errors. Also, we adopt a single output 

node with linear activation function to predict the water level at 

“Gudam” after D hours. Therefore, the MLP architecture is 12 

inputs, 40 hidden nodes with tanh(.) activation function, and 

one linear output node [30].  

After initializing the MLP with random weights uniformly 

distributed on  44 101 ,101   , the EBP algorithm updates the 

weights kjv ’s and jiw ’s to minimize the modified error 

function with n=4 for training data in 2012 and 2013. Also, we 

simulate the conventional EBP algorithm with MSE function 

for comparison [30]. Since no fair comparison is possible if the 

learning rate is kept the same for all methods [29], we derive 

the learning rate so that ∫
1

0

)(
005.0=dyηδ

p
k  for each method 

under the assumption that y is uniform on [0,1]. As a result, the 

learning rates of 0.01 and 0.02 are used for the conventional 

EBP and proposed methods, respectively. The training 

procedure of water level prediction is described as follows: 

1. Initialization of MLP with random weights uniformly 

distributed on  44 101 ,101    

2. Presentation of training data to the input layer of MLP 

3. Calculation of hidden and output node values according 

to Eqs. (1) or (2) 

4. Calculation of s'
)( p

kδ  according to Eqs. (5) or (8) 

5. Weight updates according to Eqs. (4) and (6) 

6. Estimation of error for training and test data 

7. Termination of training or go to step 2. 

 

 

 
Fig. 5. The water level at “Gudam” and its predicted value by 

the MLP with D=1 after 10,000 iterations of the proposed 

learning (March 1st ~ November 30th, 2014) 

 

 
(a) 

 
(b) 

 

Fig. 6. The water level at “Gudam” and its predicted value in 

August 16th 18:00 ~ 20th 22:00, 2014. (a) the proposed method, 

(b) the conventional EBP method 

 

Firstly, we train the MLP with D=1 for 10,000 iterations. 

For verifying the prediction performance for test data, we plot 

the real and predicted values of the water level at “Gudam” in 

2014. Fig. 5 shows the predicted results using the proposed 

method. We can find that the predicted values are globally very 

close to real values. Also, we plot detail curves of the real and 

predicted ones in the period of August 16th to 20th – the period 

with the highest peak- in Fig. 6. Fig. 6(a) shows that, in the 

proposed method, the prediction for the high-level values is 

very close to the real values. Contrary, as shown in Fig. 6(b), 

the predicted value using the conventional EBP method is 

rough and worse than that using the proposed method [30]. 
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(a) 

 
(b) 

 

Fig. 7. The water level at “Gudam” and its predicted value in 

March 21st 20:00~25th 24:00, 2014. (a) the proposed method, 

(b) the conventional EBP method. 0.40854 and 0.55506 are the 

maximum differences between real and predicted values in (a) 

and (b), respectively 

 

Also, we estimate the period of the maximum difference 

between real and predicted values and the detail curves in the 

period of March 21st to 25th are drawn in Fig. 7. The maximum 

difference in the proposed method is 40.85cm (Fig. 7(a)), 

which is much smaller than 55.50cm in the conventional EBP 

method (Fig. 7(b)). From Figs. 6 and 7, we can argue that the 

proposed method prevents overspecialization of learning to 

dominant data with low or medium level and closely 

approximates rare data including peaks.  

For further comparison, we measure the correlation 

coefficient between real data t and its predicted one y defined 

by  
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where E[.] is the expectation operator and tσ  and yσ  are 

standard deviations of t and y, respectively. The correlation 

coefficient is independent of the scale of data used and ranges 

from -1 (perfect negative correlation) to +1 (perfect positive 

correlation) [5]. In the proposed method, the correlation 

coefficient of water level prediction for test data is 0.99714, 

which is greater than 0.99692 in the conventional EBP method. 

Therefore, the proposed method globally predicts the water 

level better. 

 

4. CONCLUSIONS 

 

Although it is essential to predict the peak of hydrograph 

or water level, low or medium level data are very much 

dominant than high-level data. When training MLP neural 

networks by the conventional EBP method, MLP’s become 

highly tuned to the dominant data and this overspecialization 

degrades prediction performance of rare data including peaks. 

In this paper, we proposed a modified error function to improve 

the water level prediction in hydrological modeling by 

preventing overspecializations. The proposed method improved 

the prediction performance through weakening weight update 

for output nodes near desired values and intensifying weight 

update for output nodes far from desired values. This strategy 

had effects that learning of rare data is encouraged but learning 

of dominant data is discouraged, contrary to the conventional 

EBP method. 

Among many UNESCO world heritages in Korea, “Hahoe 

Village” in Andong region is adjacent to Nakdong River and it 

is important to monitor the water level near the village for 

protection from flooding. We developed the hydrological 

modeling to predict the water level near “Hahoe Village” using 

the proposed learning method. Since the proposed method 

prevents overspecialization for the dominant data with low or 

medium levels, the prediction for peak values is more precise 

than that using the conventional EBP method. Through 

estimating the correlation coefficient between real and 

predicted values, we also verified that the global prediction of 

proposed method is better despite weak updating of weights for 

output nodes near desired values. 
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