이 연구는 한국학의 주류를 이루는 연구영역들의 기원과 발전경로를 파악하기 위하여 텍스트 마이닝과 주경로 분석(main path analysis, MPA) 기법을 수행하였다. 이를 위하여 전통적인 인문학 연구방법론이 아닌 디지털 텍스트를 기반으로 한 정량적 분석을 시도하였고 인용 데이터베이스를 활용하여 인용정보가 포함된 한국학 관련 문헌들을 수집하고 직접 인용 네트워크를 구축하여 한국학 분야 주경로를 추출하였다. 주경로 추출 결과, 한국학 인문분야에서는 키루트(key-route) 주경로 탐색에서 두 개의 주경로 군집(①한국 고대 농경문화(역사·문화·고고학), ②한국인의 영어습득(언어학))이 발견되었고, 한국학 인문·사회분야에서는 키루트 주경로 탐색에서 네 개의 주경로 군집(①한국 지역(공간)개발·조경, ②한국 경제발전(경제원조·소프트파워), ③한국의 산업(정치경제학), ④한국의 인구구성(남아선호)·북한경제(빈곤·중국협력))이 발견되었다. 이 연구의 결과가 한국학의 정체성을 파악하는데 기존의 지엽적 분석에서 벗어나 한국학이라는 학문에서 논의되고 있는 주 영역의 발전과 진화를 거시적으로 분석·제시함으로써 한국학이 가지는 포괄성과 모호성을 다소 해소하고 한국학 외연을 가시적으로 조망하는데 기여할 수 있으리라 기대한다.
자동 주식 거래 시스템은 시장 추세의 예측, 투자 종목의 선정, 거래 전략 등 매우 다양한 최적화 문제를 통합적으로 해결할 수 있어야 한다. 그러나 기존의 감독 학습 기법에 기반한 거래 시스템들은 이러한 최적화 요소들의 효과적인 결합에는 큰 비중을 두지 않았으며, 이로 인해 시스템의 궁극적인 성능에 한계를 보인다. 이 논문은 주가의 변동 과정이 마르코프 의사결정 프로세스(MDP: Markov Decision Process)라는 가정 하에, 강화 학습에 기반한 자동 주식 거래 시스템인 R-Trader를 제안한다. 강화 학습은 예측과 거래 전략의 통합적 학습에 적합한 학습 방법이다. R-Trader는 널리 알려진 두 가지 강화 학습 알고리즘인 TB(Temporal-difference)와 Q 알고리즘을 사용하여 종목 선정과 기타 거래 인자의 최적화를 수행한다. 또한 기술 분석에 기반하여 시스템의 입력 속성을 설계하며, 가치도 함수의 근사를 위해 인공 신경망을 사용한다. 한국 주식 시장의 데이타를 사용한 실험을 통해 제안된 시스템이 시장 평균을 초과하는 수익을 달성할 수 있고, 수익률과 위험 관리의 두 가지 측면 모두에서 감독 학습에 기반한 거래 시스템에 비해 우수한 성능 보임을 확인한다.
계층적 압축 기법을 지원하는 스트리밍 시스템 응용은 제한된 네트워크 자원의 효과적인 활용과 사용자가 느끼는 화질을 최대로 해야 한다. 이를 위해서는 적절한 전송 계층의 선택 및 패킷 인터벌 결정이 이루어져야 한다. 본 논문에서는 계층이 갖는 화질의 영향력을 바탕으로 패킷 인터벌 결정 및 계층 선택 알고리즘 SAPS를 제시한다. 인터-프레임 압축 기법을 사용하는 비디오 스트리밍 시스템에서 패킷 손실의 감소만으로는 재생 화질의 향상을 이룰 수 없고, 재생 화질에 높은 영향력을 가진 패킷의 복원율이 높아질 때, 비로소 재생 화질이 향상된다. SAPS는 패킷의 의존성 그래프를 바탕으로 전송 계층을 결정하며, 이렇게 결정된 전송 계층은 사용자가 느끼는 서비스의 품질을 최대로 만든다. 또한, 선택된 계층에 대한 패킷의 인터벌 조절을 통해 계층 선택에 의한 효과가 유지되도록 한다. 실험을 통해 SAPS 알고리즘이 사용자가 느끼는 서비스 품질의 향상뿐만 아니라, 네트워크 자원 활용도 효과적으로 이루고 있음을 보여준다.
본 논문에서는 연관 마이닝 기법을 이용한 침입 시나리오 자동생성 알고리즘을 제안한다. 현재 알려진 침입 탐지는 크게 비정상 탐지(Anomaly Detection)와 오용 탐지(Misuse Detection)로 분류되는데, 침입 판정을 위해 전자는 통계적 방법, 특징 추출, 신경망 기법 둥을 사용하며, 후자는 조건부 확률, 전문가 시스템, 상태 전이 분석, 패턴 매칭 둥을 사용한다. 기존에 제안된 침입 탐지 알고리즘들의 경우 알려지지 않은 침입은 보안 전문가에 의해 수동적으로 시나리오를 생성ㆍ갱신한다. 본 알고리즘은 기존의 데이터 내에 있는 알려지지 않은 유효하고 잠재적으로 유용한 정보를 발견하는데 사용되는 연관 마이닝 알고리즘을 상태전이 기법에 적용하여 침입 시나리오를 자동으로 생성한다. 본 논문에서 제안한 알고리즘은 보안 전문가에 의해 수동적으로 생성되던 침입 시나리오를 자동적으로 생성할 수 있으며, 기존 알고리즘에 비해서 새로운 침입에 대응하는 것이 용이하고 시스템 유지 보수비용이 적다는 이점이 있다.
우리는 이동 애드 혹 네트워크에서 인터넷 프로토콜을 위한 세 가지의 주소 자동 설정 기법을 소개한다. RADA (Random ADdress Allocation)는 무작위로 IP 주소를 선택하는 방법이고, LiA (Linear Address Allocation)는 최대 IP 주소를 사용하여 순서대로 새로운 주소를 할당하는 방법이다. LiACR (Linear Address Allocation with Collision Resolution)이라고 칭하는 LiA의 확장된 방법은 제어 메시지의 오버헤드를 줄이는 방법을 사용하였다. 짧은 시간동안 다수의 노드들이 네트워크에 들어오게 되면 RADA는 LiA나 LiACR 보다 훨씬 빠르게 주소를 할당할 수 있다. 하지만 RADA는 주소 공간을 비효율적으로 사용하게 된다. 즉, RADA 는 특히 전장이나 위급 상황에서 긴급한 주소 설정이 필요할 경우 유용하다. 반면에 LiA나 LiACR은 네트워크 크기가 크고, 닫힌 형태이며, 관리 제어의 형태로 종속되는 이를테면, 무선 서비스 제공자에 의해 조정되는 애드 혹 네트워크에 더 적합하다.
본 논문에서는 비디오 프록시 서버의 제한된 저장 공간을 효율적으로 활용하기 위한 시간 제약 다중 요청 기법을 제안한다. 제안하는 기법은 요청된 동영상 데이터를 전송받아 사용자에게 전송하고 비디오 프록시 서버에 일시적으로 저장한다. 이때 일시적으로 저장된 동영상 데이터는 설정된 시간 내에서 발생되는 사용자의 요청의 상태에 따라 저장장치에서 삭제되거나 저장된다. 또한 새롭게 요청된 동영상의 저장 공간을 확보하기 위해서 저장장치에 저장되어 있는 동영상 세그먼트 중 요청 가능성이 가장 낮은 세그먼트를 선정하고 제거한다. 이를 위해 사용자에 의해 주로 요청되는 동영상 세그먼트 부분인 전방 클래스와 요청되지 않았거나 요청될 가능성이 적은 세그먼트 부분인 후방 클래스로 분리한다. 분리된 클래스 중 후방 클래스에서 가장 오래전에 요청된 세그먼트를 선정하여 삭제함으로써 제한된 공간을 효율적으로 활용한다. 실험을 통해 제안하는 방법이 기존의 방법들 보다 높은 적중률을 보이는 동시에 보다 적은 삭제 횟수를 보인다는 것을 확인한다.
본 논문에서는 협력 통신의 다중 중계기 모델에 에너지 하베스팅 기법을 적용하여 수신단에서 다이버시티 이득을 극대화함과 동시에 중계기의 전력 낭비를 줄일 수 있는 방안을 제안하였다. 송신단은 에너지 하베스팅 기법이 적용된 다중 중계기 중 가장 우수한 중계기를 선택해 메시지를 전송하게 되며 나머지 중계기는 전력으로 변환하여 저장하게 된다. 또한 기존에 선택된 중계기의 전력량이 일정 수준 이하일 경우 차선의 중계기를 선택해 전송을 유지함으로서 수신단의 다이버시티 이득을 유지할 수 있다. 따라서 제안하는 프로토콜을 일반적인 네트워크에 적용할 경우 중계기의 잔여 전력량에 따라 중계기의 교체가 지속적으로 이루어지게 되어 네트워크의 활용도 및 효율성을 증가시킬 수 있다. 마지막으로, 제안한 프로토콜을 레일리 페이딩 환경에서 전력 수집 효율 및 중계기 활용률, 비트 오류율(Bit Error Rate)을 통해 시스템의 성능을 평가한다.
In this paper, we introduce a new Fuzzy Polynomial Neural Networks (FPNNS)-like structure whose neuron is based on the Fuzzy Set-based Fuzzy Inference System (FS-FIS) and is different from that of FPNNS based on the Fuzzy relation-based Fuzzy Inference System (FR-FIS) and discuss the ability of the new FPNNS-like structure named Fuzzy Set-based Polynomial Neural Networks (FSPNN). The premise parts of their fuzzy rules are not identical, while the consequent parts of the both Networks (such as FPNN and FSPNN) are identical. This difference results from the angle of a viewpoint of partition of input space of system. In other word, from a point of view of FS-FIS, the input variables are mutually independent under input space of system, while from a viewpoint of FR-FIS they are related each other. The proposed design procedure for networks architecture involves the selection of appropriate nodes with specific local characteristics such as the number of input variables, the order of the polynomial that is constant, linear, quadratic, or modified quadratic functions being viewed as the consequent part of fuzzy rules, and a collection of the specific subset of input variables. On the parameter optimization phase, we adopt Information Granulation (IC) based on HCM clustering algorithm and a standard least square method-based learning. Through the consecutive process of such structural and parametric optimization, an optimized and flexible fuzzy neural network is generated in a dynamic fashion. To evaluate the performance of the genetically optimized FSPNN (gFSPNN), the model is experimented with using the time series dataset of gas furnace process.
셀룰라 신경회로망의 연상 메모리를 이용하여 시각적인 입력 데이터의 연산을 통하여 영상 패턴의 분류와 인식을 수행한다. 셀룰라 신경회로망은 일반적인 신경회로망과 같이 비선형 데이터의 실시간 처리가 가능하고, 세포자동자와 같이 이 격자구조의 셀로 이루어져 인접한 셀과 직접 정보를 주고받는다. 응용 분야로는 최적화, 선형/비선형화, 연상 메모리, 패턴인식, 컴퓨터 비전 등에 적용할 수 있다. 영상의 이미지 픽셀을 셀룰라 신경회로망의 셀에 대응하여 전체 이미지 영상을 모든 셀룰라 신경회로망의 셀에서 동시에 병렬로 처리할 수 있어 2-D 이미지 처리에 적합하다. 본 논문은 셀룰라 신경회로망에 의한 연상 메모리 구조를 설계하고, 학습된 하중값 메모리에서 가장 적당한 하중값을 선택하여 학습된 영상과 정확히 일치하는 출력을 얻는 방법을 제시한다. 학습을 통한 연상 메모리 구현에는 각각의 뉴런에서 일정하지 않은 다른 템플릿을 사용한다. 각각의 템플릿은 뉴런들 간의 연결 하중값을 나타내고 학습에 따라 갱신된다. 학습방법으로는 템플릿 하중값 학습에 뉴런들 간의 연결 하중값을 조정하는 가장 단순한 규칙인 Hebb의 학습방법이 사용되었고 분류값 학습에 LMS 알고리즘이 사용되었다.
Background: Monoclonal antibodies (mAb) of rodent origin are produced with ease by hybridoma fusion technique, and have been successfully used as therapeutic reagents for humans after humanization by genetic engineering. However, utilization of these antibodies for therapeutic purpose has been limited by the fact that they act as immunogens in human body causing undesired side effects. So far, there have been several attempts to produce human mAbs for effective in vivo diagnostic or therapeutic reagents including the use of humanized xenomouse that is generated by mating knockout mice which lost Ig heavy and light chain genes by homologous recombination and transgenic mice having both human Ig heavy and light gene loci in their genome. Methods: Genomic DNA fragments of mouse Ig heavy and light chain were obtained from a mouse brain ${\lambda}$ genomic library by PCR screening and cloned into a targeting vector with ultimate goal of generating Ig knockout mouse. Results: Through PCR screening of the genomic library, three heavy chain and three light chain Ig gene fragments were identified, and restriction map of one of the heavy chain gene fragments was determined. Then heavy chain Ig gene fragments were subcloned into a targeting vector. The resulting construct was introduced into embryonic stem cells. Antibiotic selection of transfected cells is under the progress. Conclusion: Generation of xenomouse is particularly important in medical biotechnology. However, this goal is not easily achieved due to the technical difficulties as well as huge financial expenses. Although we are in the early stage of a long-term project, our results, at least, partially contribute the successful generation of humanized xenomouse in Korea.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.