• Title/Summary/Keyword: network optimization

Search Result 2,239, Processing Time 0.029 seconds

Development of an Optimization Model and Algorithm Based on Transportation Problem with Additional Constraints (추가 제약을 갖는 수송문제를 활용한 공화차 배분 최적화 모형 및 해법 개발)

  • Park, Bum Hwan;Kim, Young-Hoon
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.6
    • /
    • pp.833-843
    • /
    • 2016
  • Recently, in the field of rail freight transportation, the number of trains dedicated for shippers has been increasing. These dedicated trains, which run on the basis of a contract with shippers, had been restricted to the transportation of containers, or so called block trains. Nowadays, such commodities have extended to cement, hard coal, etc. Most full freight cars are transported by dedicated trains. But, for empty car distribution, the efficiency still remains questionable because the distribution plan is manually developed by dispatchers. In this study, we investigated distribution models delineated in the KTOCS system which was developed by KORAIL as well as mathematical models considered in the state-of-the-art. The models are based on optimization models, especially the network flow model. Here we suggest a new optimization model with a framework of the column generation approach. The master problem can be formulated into a transportation problem with additional constraints. The master problem is improved by adding a new edge between the supply node and the demand node; this edge can be found using a simple shorted path in the time-space network. Finally, we applied our algorithm to the Korean freight train network and were able to find the total number of empty car kilometers decreased.

Efficient Algorithms for Multicommodity Network Flow Problems Applied to Communications Networks (다품종 네트워크의 효율적인 알고리즘 개발 - 정보통신 네트워크에의 적용 -)

  • 윤석진;장경수
    • The Journal of Information Technology
    • /
    • v.3 no.2
    • /
    • pp.73-85
    • /
    • 2000
  • The efficient algorithms are suggested in this study for solving the multicommodity network flow problems applied to Communications Systems. These problems are typical NP-complete optimization problems that require integer solution and in which the computational complexity increases numerically in appropriate with the problem size. Although the suggested algorithms are not absolutely optimal, they are developed for computationally efficient and produce near-optimal and primal integral solutions. We supplement the traditional Lagrangian method with a price-directive decomposition. It proceeded as follows. First, A primal heuristic from which good initial feasible solutions can be obtained is developed. Second, the dual is initialized using marginal values from the primal heuristic. Generally, the Lagrangian optimization is conducted from a naive dual solution which is set as ${\lambda}=0$. The dual optimization converged very slowly because these values have sort of gaps from the optimum. Better dual solutions improve the primal solution, and better primal bounds improve the step size used by the dual optimization. Third, a limitation that the Lagrangian decomposition approach has Is dealt with. Because this method is dual based, the solution need not converge to the optimal solution in the multicommodity network problem. So as to adjust relaxed solution to a feasible one, we made efficient re-allocation heuristic. In addition, the computational performances of various versions of the developed algorithms are compared and evaluated. First, commercial LP software, LINGO 4.0 extended version for LINDO system is utilized for the purpose of implementation that is robust and efficient. Tested problem sets are generated randomly Numerical results on randomly generated examples demonstrate that our algorithm is near-optimal (< 2% from the optimum) and has a quite computational efficiency.

  • PDF

Development of Well Placement Optimization Model using Artificial Neural Network and Simulated Annealing (인공신경망과 SA 알고리즘을 이용한 지능형 생산정 위치 최적화 전산 모델 개발)

  • Kwak, Tae-Sung;Jung, Ji-Hun;Han, Dong-Kwon;Kwon, Sun-Il
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.1
    • /
    • pp.28-37
    • /
    • 2015
  • This study presents the development of a well placement optimization model, combining an artificial neural network, which enables high-speed calculation, with a simulated annealing algorithm. The conventional FDM simulator takes excessive time when used to perform a field scale reservoir simulation. In order to solve this problem, an artificial neural network was applied to the model to allow the simulation to be executed within a short time. Also by using the given result, the optimization method, SA algorithm, was implemented to automatically select the optimal location without taking any subjective experiences into consideration. By comparing the result of the developed model with the eclipse simulator, it was found that the prediction performance of the developed model has become favorable, and the speed of calculation performance has also been improved. Especially, the optimum value was estimated by performing a sensitivity analysis for the cooling rate and the initial temperature, which is the control parameter of SA algorithm. From this result, it was verified that the calculation performance has been improved, as well. Lastly, an optimization for the well placement was performed using the model, and it concluded the optimized place for the well by selecting regions with great productivity.

Design of Data-centroid Radial Basis Function Neural Network with Extended Polynomial Type and Its Optimization (데이터 중심 다항식 확장형 RBF 신경회로망의 설계 및 최적화)

  • Oh, Sung-Kwun;Kim, Young-Hoon;Park, Ho-Sung;Kim, Jeong-Tae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.3
    • /
    • pp.639-647
    • /
    • 2011
  • In this paper, we introduce a design methodology of data-centroid Radial Basis Function neural networks with extended polynomial function. The two underlying design mechanisms of such networks involve K-means clustering method and Particle Swarm Optimization(PSO). The proposed algorithm is based on K-means clustering method for efficient processing of data and the optimization of model was carried out using PSO. In this paper, as the connection weight of RBF neural networks, we are able to use four types of polynomials such as simplified, linear, quadratic, and modified quadratic. Using K-means clustering, the center values of Gaussian function as activation function are selected. And the PSO-based RBF neural networks results in a structurally optimized structure and comes with a higher level of flexibility than the one encountered in the conventional RBF neural networks. The PSO-based design procedure being applied at each node of RBF neural networks leads to the selection of preferred parameters with specific local characteristics (such as the number of input variables, a specific set of input variables, and the distribution constant value in activation function) available within the RBF neural networks. To evaluate the performance of the proposed data-centroid RBF neural network with extended polynomial function, the model is experimented with using the nonlinear process data(2-Dimensional synthetic data and Mackey-Glass time series process data) and the Machine Learning dataset(NOx emission process data in gas turbine plant, Automobile Miles per Gallon(MPG) data, and Boston housing data). For the characteristic analysis of the given entire dataset with non-linearity as well as the efficient construction and evaluation of the dynamic network model, the partition of the given entire dataset distinguishes between two cases of Division I(training dataset and testing dataset) and Division II(training dataset, validation dataset, and testing dataset). A comparative analysis shows that the proposed RBF neural networks produces model with higher accuracy as well as more superb predictive capability than other intelligent models presented previously.

Application of Resampling Method based on Statistical Hypothesis Test for Improving the Performance of Particle Swarm Optimization in a Noisy Environment (노이즈 환경에서 입자 군집 최적화 알고리즘의 성능 향상을 위한 통계적 가설 검정 기반 리샘플링 기법의 적용)

  • Choi, Seon Han
    • Journal of the Korea Society for Simulation
    • /
    • v.28 no.4
    • /
    • pp.21-32
    • /
    • 2019
  • Inspired by the social behavior models of a bird flock or fish school, particle swarm optimization (PSO) is a popular metaheuristic optimization algorithm and has been widely used from solving a complex optimization problem to learning a artificial neural network. However, PSO is difficult to apply to many real-life optimization problems involving stochastic noise, since it is originated in a deterministic environment. To resolve this problem, this paper incorporates a resampling method called the uncertainty evaluation (UE) method into PSO. The UE method allows the particles to converge on the accurate optimal solution quickly in a noisy environment by selecting the particles' global best position correctly, one of the significant factors in the performance of PSO. The results of comparative experiments on several benchmark problems demonstrated the improved performance of the propose algorithm compared to the existing studies. In addition, the results of the case study emphasize the necessity of this work. The proposed algorithm is expected to be effectively applied to optimize complex systems through digital twins in the fourth industrial revolution.

Optimization-based method for structural damage detection with consideration of uncertainties- a comparative study

  • Ghiasi, Ramin;Ghasemi, Mohammad Reza
    • Smart Structures and Systems
    • /
    • v.22 no.5
    • /
    • pp.561-574
    • /
    • 2018
  • In this paper, for efficiently reducing the computational cost of the model updating during the optimization process of damage detection, the structural response is evaluated using properly trained surrogate model. Furthermore, in practice uncertainties in the FE model parameters and modelling errors are inevitable. Hence, an efficient approach based on Monte Carlo simulation is proposed to take into account the effect of uncertainties in developing a surrogate model. The probability of damage existence (PDE) is calculated based on the probability density function of the existence of undamaged and damaged states. The current work builds a framework for Probability Based Damage Detection (PBDD) of structures based on the best combination of metaheuristic optimization algorithm and surrogate models. To reach this goal, three popular metamodeling techniques including Cascade Feed Forward Neural Network (CFNN), Least Square Support Vector Machines (LS-SVMs) and Kriging are constructed, trained and tested in order to inspect features and faults of each algorithm. Furthermore, three wellknown optimization algorithms including Ideal Gas Molecular Movement (IGMM), Particle Swarm Optimization (PSO) and Bat Algorithm (BA) are utilized and the comparative results are presented accordingly. Furthermore, efficient schemes are implemented on these algorithms to improve their performance in handling problems with a large number of variables. By considering various indices for measuring the accuracy and computational time of PBDD process, the results indicate that combination of LS-SVM surrogate model by IGMM optimization algorithm have better performance in predicting the of damage compared with other methods.

Relay Selection Scheme Based on Quantum Differential Evolution Algorithm in Relay Networks

  • Gao, Hongyuan;Zhang, Shibo;Du, Yanan;Wang, Yu;Diao, Ming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.7
    • /
    • pp.3501-3523
    • /
    • 2017
  • It is a classical integer optimization difficulty to design an optimal selection scheme in cooperative relay networks considering co-channel interference (CCI). In this paper, we solve single-objective and multi-objective relay selection problem. For the single-objective relay selection problem, in order to attain optimal system performance of cooperative relay network, a novel quantum differential evolutionary algorithm (QDEA) is proposed to resolve the optimization difficulty of optimal relay selection, and the proposed optimal relay selection scheme is called as optimal relay selection based on quantum differential evolutionary algorithm (QDEA). The proposed QDEA combines the advantages of quantum computing theory and differential evolutionary algorithm (DEA) to improve exploring and exploiting potency of DEA. So QDEA has the capability to find the optimal relay selection scheme in cooperative relay networks. For the multi-objective relay selection problem, we propose a novel non-dominated sorting quantum differential evolutionary algorithm (NSQDEA) to solve the relay selection problem which considers two objectives. Simulation results indicate that the proposed relay selection scheme based on QDEA is superior to other intelligent relay selection schemes based on differential evolutionary algorithm, artificial bee colony optimization and quantum bee colony optimization in terms of convergence speed and accuracy for the single-objective relay selection problem. Meanwhile, the simulation results also show that the proposed relay selection scheme based on NSQDEA has a good performance on multi-objective relay selection.

(Visualization Tool of searching process of Particle Swarm Optimization) (PSO(Particle Swarm Optinization)탐색과정의 가시화 툴)

  • 유명련;김현철
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.3 no.4
    • /
    • pp.35-41
    • /
    • 2002
  • To solve the large scale optimization problem approximately, various approaches have been introduced. They are mainly based on recent research advancement of simulations for evolutions, flocking, annealing, and interactions among organisms on artificial environments. The typical ones are simulated annealing(SA), artificial neural network(ANN), genetic algorithms(GA), tabu search(TS), etc. Recently the particle swarm optimization(PSO) has been introduced. The PSO simulates the process of birds flocking or fish schooling for food, as with the information of each agent Is share by other agents. The PSO technique has been applied to various optimization problems of which variables are continuous. However, there are seldom trials for visualization of searching process. This paper proposes a new visualization tool for searching process particle swarm optimization(PSO) algorithm. The proposed tool is effective for understanding the searching process of PSO method and educational for students.

  • PDF

Optimization of Multiple Quality Characteristics for Polyether Ether Ketone Injection Molding Process

  • Kuo Chung-Feng Jeffrey;Su Te-Li
    • Fibers and Polymers
    • /
    • v.7 no.4
    • /
    • pp.404-413
    • /
    • 2006
  • This study examines multiple quality optimization of the injection molding for Polyether Ether Ketone (PEEK). It also looks into the dimensional deviation and strength of screws that are reduced and improved for the molding quality, respectively. This study applies the Taguchi method to cut down on the number of experiments and combines grey relational analysis to determine the optimal processing parameters for multiple quality characteristics. The quality characteristics of this experiment are the screws' outer diameter, tensile strength and twisting strength. First, one should determine the processing parameters that may affect the injection molding with the $L_{18}(2^1{\times}3^7)$ orthogonal, including mold temperature, pre-plasticity amount, injection pressure, injection speed, screw speed, packing pressure, packing time and cooling time. Then, the grey relational analysis, whose response table and response graph indicate the optimum processing parameters for multiple quality characteristics, is applied to resolve this drawback. The Taguchi method only takes a single quality characteristic into consideration. Finally, a processing parameter prediction system is established by using the back-propagation neural network. The percentage errors all fall within 2%, between the predicted values and the target values. This reveals that the prediction system established in this study produces excellent results.

Optimization of Harmonic Tuning Circuit vary as Drain Voltage of Class F Power Amplifier (Class F 전력 증폭기의 드레인 전압 변화에 따른 고조파 조정 회로의 최적화)

  • Lee, Chong-Min;Seo, Chul-Hun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.1
    • /
    • pp.102-106
    • /
    • 2009
  • This paper presents the design and optimization of output matching network according to envelope for class F power amplifier(PA) which is to apply to envelope elimination and restoration(EER) transmitter. In this paper, to increase the PAE of class F power amplifier which applies to EER transmitter, the varactor diode has been used on output matching network. As envelope changes, it optimizes constitution of harmonic trap that is short circuit in 2nd-harmonic and is open circuit in 3rd-harmonic. When drain voltage changes from 25 V to 30 V, some percentage is improved in the PAE.put the abstract of paper here.