DOI QR코드

DOI QR Code

Application of Resampling Method based on Statistical Hypothesis Test for Improving the Performance of Particle Swarm Optimization in a Noisy Environment

노이즈 환경에서 입자 군집 최적화 알고리즘의 성능 향상을 위한 통계적 가설 검정 기반 리샘플링 기법의 적용

  • Choi, Seon Han (Dept. of IT Convergence and Application Engineering, Pukyong National University)
  • Received : 2019.08.27
  • Accepted : 2019.11.07
  • Published : 2019.12.31

Abstract

Inspired by the social behavior models of a bird flock or fish school, particle swarm optimization (PSO) is a popular metaheuristic optimization algorithm and has been widely used from solving a complex optimization problem to learning a artificial neural network. However, PSO is difficult to apply to many real-life optimization problems involving stochastic noise, since it is originated in a deterministic environment. To resolve this problem, this paper incorporates a resampling method called the uncertainty evaluation (UE) method into PSO. The UE method allows the particles to converge on the accurate optimal solution quickly in a noisy environment by selecting the particles' global best position correctly, one of the significant factors in the performance of PSO. The results of comparative experiments on several benchmark problems demonstrated the improved performance of the propose algorithm compared to the existing studies. In addition, the results of the case study emphasize the necessity of this work. The proposed algorithm is expected to be effectively applied to optimize complex systems through digital twins in the fourth industrial revolution.

군집에 대한 사회적 행동 모델에 영감을 받은 군집 최적화 알고리즘은 복잡한 최적화 문제 해결에서부터 인공 신경망의 학습에까지 활용되는 대표적인 메타휴리스틱 최적화 알고리즘 중의 하나이다. 하지만 이 알고리즘은 기본적으로 확률적 노이즈가 존재하지 않는 결정적인 환경에서 개발되었기 때문에, 많은 경우 확률적 노이즈가 존재하는 실제 문제에 적용하기에 어려움이 있었다. 본 논문에서는 이를 개선하기 위하여 불확실 평가 기법이라고 정의되는 통계적 가설 검정 기반의 리샘플링 기법을 적용한다. 이 기법을 통하여 입자 군집 최적화 알고리즘의 성능에 가장 큰 영향을 미치는 입자들의 전역 최적을 정확하게 찾으므로 노이즈 환경에서 입자들이 최적해로 보다 정확하고 빠르게 수렴하도록 한다. 다양한 벤치마크 문제들에 대한 기존 알고리즘들과의 비교 실험 결과는 제안하는 알고리즘의 개선된 성능을 입증하고, 사례 연구의 결과는 본 연구의 필요성을 강조한다. 본 연구 결과가 4차 산업혁명 시대에 디지털 트윈 등을 통한 시뮬레이션 기반 시스템 최적화에 효과적으로 적용될 수 있을 것이라 기대한다.

Keywords

References

  1. Banks, A., J. Vincent, and C. Anyakoha (2007) "A review of particle swarm optimization. Part I: background and development", Natural Computing, 6(4), 467-484. https://doi.org/10.1007/s11047-007-9049-5
  2. Bank, A., J. Vincent, and C. Anyakoha (2008) "A review of particle swarm optimization. Part II: hybridisation, combinatorial, multicriteria and constrained optimization, and indicative applications", Natural Computing, 7(1), 109-124. https://doi.org/10.1007/s11047-007-9050-z
  3. Bratton, D. and J. Kennedy (2007) "Defining a standard for particle swarm optimization", Proceedings of the 2007 IEEE swarm intelligence symposium (SIS 2007), Honolulu, Hawaii, 120-127.
  4. Chen, C. H. and L. H. Lee (2011) Stochastic simulation optimization: an optimal computing budget allocation (Vol. 1), World scientific, Singapore.
  5. Choi, S. H., J. H. Lee, S. H. Lee, H. D. Yoo, J. Koo, and T. G. Kim (2016) "6dof aircraft simulation model capable of handling maneuver events (WIP)", Proceedings of the 2016 Summer Computer Simulation Conference (SCSC 2016), Montreal, Canada, Art. no. 54.
  6. Choi, S. H. and T. G. Kim (2018) "Efficient ranking and selection for stochastic simulation model based on hypothesis test", IEEE Transactions on Systems, Man, and Cybernetics: Systems, 48(9), 1555-1565. https://doi.org/10.1109/TSMC.2017.2679192
  7. Clerc, M. and J. Kennedy (2002) "The particle swarm-explosion, stability, and convergence in a multidimensional complex space", IEEE transactions on Evolutionary Computation, 6(1), 58-73. https://doi.org/10.1109/4235.985692
  8. Eberhart, R. and J. Kennedy (1995) "A new optimizer using particle swarm theory", Proceedings of the Sixth International Symposium on Micro Machine and Human Science (MHS '95), Nagoya, Japan, 39-43.
  9. Fernandez-Marquez, J. L. and J. L. Arcos (2009) "An evaporation mechanism for dynamic and noisy mulimodal optimization", Proceedings of the 11th Annual conference on Genetic and evolutionary computation (GECCO-2009), Prague, Czech Republic, 17-24.
  10. Horng, S. C., F. Y. Yang, and S. S. Lin (2012) "Applying PSO and OCBA to minimize the overkills and reprobes in wafer probe testing", IEEE Transactions on Semiconductor Manufacturing, 25(3), 531-540. https://doi.org/10.1109/TSM.2012.2200266
  11. Jamil, M. and X. S. Yang (2013) "A literature survey of benchmark functions for global optimization problems", International Journal of Mathematical Modelling and Numerical Optimisation, 4(2), 150-194. https://doi.org/10.1504/IJMMNO.2013.055204
  12. Xu, J., E. Huang, C.-H. Chen, and L. H. Lee (2015) "Simulation optimization: A review and exploration in the new era of cloud computing and big data", Asia-Pacific Journal of Operational Research, 32 (3), 1550019. https://doi.org/10.1142/S0217595915500190
  13. Xu, J., E. Huang, L. Hsieh, L. H. Lee, Q. S. Jia, and C.-H. Chen (2016) "Simulation optimization in the era of Industrial 4.0 and the Industrial Internet", Journal of Simulation, 10(4), 310-320. https://doi.org/10.1057/s41273-016-0037-6
  14. Kennedy, J. and R. Eberhart (1995) "Particle swarm optimization", Proceedings of the 1995 IEEE International Conference on Neural Networks, Perth, Australia, 1942-1948.
  15. Pan, H., L. Wang, and B. Liu (2006) "Particle swarm optimization for function optimization in noisy environment", Applied Mathematics and Computation, 181(2), 908-919. https://doi.org/10.1016/j.amc.2006.01.066
  16. Rada-Vilela, J., M. Zhang, and M. Johnston (2013) "Optimal computing budget allocation in particle swarm optimization", Proceedings of the 15th annual conference on Genetic and evolutionary computation (GECCO-2013), Amsterdam, The Netherlands, 81-88.
  17. Rada-Vilela, J., M. Johnston, and M. Zhang (2015) "Population statistics for particle swarm optimization: Single-evaluation methods in noisy optimization problems", Soft computing, 19(9), 2691-2716. https://doi.org/10.1007/s00500-014-1438-y
  18. Samanta, B. and C. Nataraj (2009) "Application of particle swarm optimization and proximal support vector machines for fault detection", Swarm Intelligence, 3(4), 303. https://doi.org/10.1007/s11721-009-0028-6
  19. Sun, T. Y., C. C. Liu, S. J. Tsai, S. T. Hsieh, and K. Y. Li (2010) "Cluster guide particle swarm optimization (CGPSO) for underdetermined blind source separation with advanced conditions", IEEE Transactions on Evolutionary Computation, 15(6), 798-811. https://doi.org/10.1109/TEVC.2010.2049361
  20. Taghiyeh, S. and J. Xu (2016) "A new particle swarm optimization algorithm for noisy optimization problems", Swarm Intelligence, 10(3), 161-192. https://doi.org/10.1007/s11721-016-0125-2
  21. Zhang, S., J. Xu, L. H. Lee, E. P. Chew, W. P. Wong, and C.-H. Chen (2017) "Optimal computing budget allocation for particle swarm optimization in stochastic optimization", IEEE Transactions on Evolutionary Computation, 21(2), 206-219. https://doi.org/10.1109/TEVC.2016.2592185