References
- Al-jarrah, O.Y., Yoo, P.D., Muhaidat, S. and Karagiannidis, G.K. (2015), "Efficient machine learning for big data : A review", Big Data Res., 2(3), 87-93. https://doi.org/10.1016/j.bdr.2015.04.001
- An, D., Kim, N.H. and Choi, J. (2015), "Practical options for selecting data-driven or physics-based prognostics algorithms with reviews", Reliab. Eng. Syst. Saf., 133, 223-236. https://doi.org/10.1016/j.ress.2014.09.014
- Bakhary, N., Hao, H. and Deeks, A.J. (2007), "Damage detection using artificial neural network with consideration of uncertainties", Eng. Struct., 29(11), 2806-2815. https://doi.org/10.1016/j.engstruct.2007.01.013
- Boller, C., Chang, F.K. and Fujino, Y. (2009), Encyclopedia of structural health monitoring. John Wiley & Sons.
- Cortes, C. and Vapnik, V. (1995), "Support-vector networks", Mach. Learn., 20(3), 273-297. https://doi.org/10.1007/BF00994018
- Dizangian, B. and Ghasemi, M.R. (2016), "A fast decoupled reliability-based design optimization of structures using Bspline interpolation curves", J. Braz. Soc. Mech. Sci. Eng., 38(6), 1817-1829. https://doi.org/10.1007/s40430-015-0423-4
- Dubourg, V. and Sudret, B. (2011), "Reliability-based design optimization using kriging surrogates and subset simulation", Struct. Multidiscip. O., 44(5), 673-690. https://doi.org/10.1007/s00158-011-0653-8
- Eberhart, R. and Kennedy, J. (1995), "A new optimizer using particle swarm theory", In Micro Machine and Human Science, 1995. MHS'95., Proceedings of the 6th International Symposium on (pp. 39-43). IEEE.
- Fan, W. and Qiao, P. (2011), "Vibration-based damage identification methods: a review and comparative study", Struct. Health. Monit., 10(1), 83-111. https://doi.org/10.1177/1475921710365419
- Farrar, C.R. and Worden, K. (2012), Structural health monitoring: a machine learning perspective, John Wiley & Sons.
- Fathnejat, H., Torkzadeh, P., Salajegheh, E. and Ghiasi, R. (2014), "Structural damage detection by model updating method based on cascade feed-forward neural network as an efficient approximation mechanism", Int. J. Optim. Civ. Eng., 4(4), 451-472.
- Ghasemi, M.R., Ghiasi, R. and Varaee, H. (2017a), "Probabilitybased damage detection of structures using Kriging surrogates and enhanced ideal gas molecular movement algorithm", Int. J. Mech. Aerosp. Ind. Mechatron. Manuf. Eng., 11, 628-636.
- Ghasemi, M.R., Ghiasi, R. and Varaee, H. (2017b), "Probability-based damage detection of structures using model updating with enhanced ideal gas molecular movement algorithm", Proceedings of the 19th International Conference on Reliability and Structural Safety (ICRSS 2017), London, United Kingdom (to be published).
- Ghasemi, M.R., Ghiasi, R. and Varaee, H. (2018), "Probabilitybased damage detection of structures using surrogate model and enhanced ideal gas molecular movement algorithm", (Eds., A. Schumacher, T. Vietor, S. Fiebig, K.U. Bletzinger and K. Maute), Advances in Structural and Multidisciplinary Optimization: Proceedings of the 12th World Congress of Structural and Multidisciplinary Optimization (WCSMO12) (pp. 1657-1674). Cham: Springer International Publishing.
- Ghasemi, M.R. and Varaee, H. (2017a), "A fast multi-objective optimization using an efficient ideal gas molecular movement algorithm", Eng. Comput., 33(3), 477-496. https://doi.org/10.1007/s00366-016-0485-7
- Ghasemi, M.R. and Varaee, H. (2017b), "Damping vibrationbased IGMM optimization algorithm: fast and significant", Soft Comput., 1-31.
- Ghiasi, R., Ghasemi, M.R. and Noori, M. (2018), "Comparative studies of metamodeling and AI-Based techniques in damage detection of structures", Adv. Eng. Softw., 125, 101-112. https://doi.org/10.1016/j.advengsoft.2018.02.006
- Ghiasi, R., Ghasemi, M.R. and Sohrabi, M.R. (2017), "Structural damage detection using frequency response function index and surrogate model based on optimized extreme learning machine algorithm", J. Comput. Method. Eng., 36(1), 1-17. https://doi.org/10.18869/acadpub.jcme.36.1.1
- Ghiasi, R., Torkzadeh, P. and Noori, M. (2014), "Structural damage detection using artificial neural networks and least square support vector machine with particle swarm harmony search algorithm", Int. J. Sustain. Mater. Struct. Syst., 1(4), 303-320. https://doi.org/10.1504/IJSMSS.2014.068798
- Ghiasi, R., Torkzadeh, P. and Noori, M. (2016), "A machinelearning approach for structural damage detection using least square support vector machine based on a new combinational kernel function", Struct. Health. Monit., 15(3), 302-316. https://doi.org/10.1177/1475921716639587
- Hakim, S.J.S. and Razak, H.A. (2014), "Modal parameters based structural damage detection using artificial neural networks-a review", Smart Struct. Syst., 14(2), 159-189. https://doi.org/10.12989/sss.2014.14.2.159
- Hao, H. and Xia, Y. (2002), "Vibration-based damage detection of structures by genetic algorithm", J. Comput. Civ. Eng., 16(3), 222-229. https://doi.org/10.1061/(ASCE)0887-3801(2002)16:3(222)
- Hedayat, A., Davilu, H., Abdollahzadeh, A. and Sepanloo, K. (2009), "Progress in nuclear energy estimation of research reactor core parameters using cascade feed forward artificial neural networks", Prog. Nucl. Energ., 51(6-7), 709-718. https://doi.org/10.1016/j.pnucene.2009.03.004
- Hua, X.G., Ni, Y.Q., Chen, Z.Q. and Ko, J.M. (2008), "An improved perturbation method for stochastic finite element model updating." Int. J. Numer. Meth. Eng., 73(13), 1845-1864. https://doi.org/10.1002/nme.2151
- Iman, R.L. (2008), Latin hypercube sampling. Wiley Online Library.
- Kaveh, A., Javadi, S.M. and Maniat, M. (2014), "Damage assessment via modal data with a mixed particle swarm strategy, ray optimizer, and harmony search", Asian J. Civ. Eng., 15(1), 95-106.
- Kaveh, A. and Talatahari, S. (2009), "Particle swarm optimizer , ant colony strategy and harmony search scheme hybridized for optimization of truss structures", Comput. Struct., 87(5-6), 267-283. https://doi.org/10.1016/j.compstruc.2009.01.003
- Kaveh, A. and Zolghadr, A. (2014), "Comparison of nine metaheuristic algorithms for optimal design of truss structures with frequency constraints", Adv. Eng. Softw., 76, 9-30. https://doi.org/10.1016/j.advengsoft.2014.05.012
- Kennedy, J. (2010), "Particle swarm optimization", In Encyclopedia of Machine Learning (pp. 760-766). Springer.
- Kottegoda, N.T. and Rosso, R. (1997), Probability, Statistics, and Reliability for Civil and Environmental Engineers, The McGraw-Hill Companies.
- Liu, Y., Ju, Y., Duan, C. and Zhao, X. (2011), "Structure damage diagnosis using neural network and feature fusion", Eng. Appl. Artif. Intel., 24(1), 87-92. https://doi.org/10.1016/j.engappai.2010.08.011
- Mahmoudi, S., Trivaudey, F. and Bouhaddi, N. (2016), "Benefits of metamodel-reduction for nonlinear dynamic response analysis of damaged composite structures", Finite Elem. Anal. Des., 119, 1-14. https://doi.org/10.1016/j.finel.2016.05.001
- Malekzadeh, M., Atia, G. and Catbas, F.N. (2015), "Performance-based structural health monitoring through an innovative hybrid data interpretation framework", J. Civ. Struct. Health. Monit., 5(3), 287-305. https://doi.org/10.1007/s13349-015-0118-7
- Malekzadeh, M. and Catbas, F.N. (2016), "A machine learning framework for automated functionality monitoring of movable bridges", In Dynamics of Civil Structures, Volume 2 (57-63). Springer.
- Mazzoni, S., McKenna, F., Scott, M.H. and Fenves, G.L. (2006), "OpenSees command language manual", Pacific Earthq. Eng. Res. Cent.
- Nobahari, M., Ghasemi, M.R. and Shabakhty, N. (2017a), "A novel heuristic search algorithm for optimization with application to structural damage identification", Smart Struct. Syst., 19(4), 449-461. https://doi.org/10.12989/sss.2017.19.4.449
- Nobahari, M., Ghasemi, M.R. and Shabakhty, N. (2017b), "Truss structure damage identification using residual force vector and genetic algorithm", Steel Compos. Struct., 25(4), 485-496. https://doi.org/10.12989/SCS.2017.25.4.485
- Padil, K.H., Bakhary, N. and Hao, H. (2017), "The use of a nonprobabilistic artificial neural network to consider uncertainties in vibration-based-damage detection", Mech. Syst. Signal Pr., 83, 194-209. https://doi.org/10.1016/j.ymssp.2016.06.007
- Papadopoulos, L. and Garcia, E. (1998), "Structural damage identification : A probabilistic approach", AIAA J., 36(11), 2137-2145. https://doi.org/10.2514/2.318
- Seyedpoor, S.M. (2012), "A two stage method for structural damage detection using a modal strain energy based index and particle swarm optimization", Int. J. Nonlinear. Mech., 47(1), 1-8.
- Shirazi, M.R.N., Mollamahmoudi, H. and Seyedpoor, S.M. (2013), "Structural damage identification using an adaptive multi-stage optimization method based on a modified particle swarm algorithm", J. Optimz. Theory Appl., 1-11.
- Simoen, E., Roeck, G.De and Lombaert, G. (2015), "Dealing with uncertainty in model updating for damage assessment : A review", Mech. Syst. Signal Pr., 56-57, 123-149. https://doi.org/10.1016/j.ymssp.2014.11.001
- Spiridonakos, M.D. and Chatzi, E.N. (2015), "Metamodeling of dynamic nonlinear structural systems through polynomial chaos NARX models", Comput. Struct., 157, 99-113. https://doi.org/10.1016/j.compstruc.2015.05.002
- Suykens, J.A.K. and Vandewalle, J. (1999), "Least squares support vector machine classifiers", Neural Process. Lett., 9(3), 293-300. https://doi.org/10.1023/A:1018628609742
- Torkzadeh, P., Fathnejat, H. and Ghiasi, R. (2016), "Damage detection of plate-like structures using intelligent surrogate model", Smart Struct. Syst., 18(6), 1233-1250. https://doi.org/10.12989/sss.2016.18.6.1233
- Torkzadeh, P., Goodarzi, Y., and Salajegheh, E, (2013). "A twostage damage detection method for large-scale structures by kinetic and modal strain energies using heuristic particle swarm optimization." Int. J. Optim. Civ. Eng., 3(3), 465-482.
- Varaee, H. and Ghasemi, M.R. (2017), "Engineering optimization based on ideal gas molecular movement algorithm", Eng. Comput., 33(1), 71-93. https://doi.org/10.1007/s00366-016-0457-y
- Wang, X.J., Zhou, X.Q., Xia, Y. and Weng, S. (2013), "Comparisons between modal-parameter-based and flexibility-based damage identification methods", Adv. Struct. Eng., 16(9), 1611-1619. https://doi.org/10.1260/1369-4332.16.9.1611
- Xia, Y., Hao, H., Brownjohn, J.M.W. and Xia, P. (2002), "Damage identification of structures with uncertain frequency and mode shape data", Earthq. Eng. Struct. D., 31(5), 1053-1066. https://doi.org/10.1002/eqe.137
- Xia, Y., Hao, H., Deeks, A.J. and Zhu, X. (2008), "Condition assessment of shear connectors in slab-girder bridges via vibration measurements", J. Bridg. Eng., 13(1), 43-54. https://doi.org/10.1061/(ASCE)1084-0702(2008)13:1(43)
- Xu, Q., Wehrle, E. and Baier, H. (2013), "Knowledge-based surrogate modeling in engineering design optimization", In Surrogate-Based Modeling and Optimization (313-336). Springer.
- Yang, X.S. and Gandomi, A.H. (2012), "Bat algorithm: a novel approach for global engineering optimization", Eng. Comput., 29(5), 464-483. https://doi.org/10.1108/02644401211235834