• Title/Summary/Keyword: navier method

Search Result 1,247, Processing Time 0.026 seconds

AXISYMMETRIC STAGNATION FLOW NEAR A PLANE WALL COATED WITH A MAGNETIC FLUID OF UNIFORM THICKNESS (균일 두께로 자성유체가 피막된 평면 벽 주의의 축대칭 정체 유동)

  • Ko, Hyung-Jong;Kim, Kyoung-Hoon;Kim, Se-Woong
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.10a
    • /
    • pp.39-44
    • /
    • 2007
  • A similarity solution of the Navier-Stokes equation for the axisymmetric stagnation flow near a plane wall coated with a magnetic fluid of uniform thickness is constructed. The shape functions representing the flow in two (magnetic and normal) fluid layer are determined from a third order boundary value problem, which is solved by the Runge-Kutta method with two shooting parameters. Features of the flow including streamline pattern and interface velocity are investigated for the varying values of density ratio, viscosity ratio, and Reynolds number. The results for the interface and wall shear stress, boundary layer and displacement thickness are also presented.

  • PDF

A Numerical Study on Real Gas Effect due to High Temperature and Speed Flow (고온 고속유동으로 인한 실제 기체효과의 수치해석적 연구)

  • 송동주
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.9
    • /
    • pp.2431-2442
    • /
    • 1994
  • In this paper the efficient space marching Viscous Shock Layer and Parabolized Navier-Stokes method have been applied to study the complex 3-D hypersonic equilibrium chemically reacting flowfilelds over sphere-cone($10^{\circ}$) vehicle at low angles of attack($0^{\circ}~5^{\circ}), Mach 20, and an altitude of 35km. The current bluntbody/afterbody space marching numerical method predicts the complex flowfields accurately and efficiently even on a small computer. The shock thickness from equilibrium air model is thinner than that from the perfect gas model. The windside wall heat-transfer rate, pressure and skin friction force were increased significantly when compared with those of leeside. The CA, CN, CM were increased almost linearly with the angle of attack in this region. The wall pressure, heat transfer, skin friction and axial force coeffient from equilibrium model were much higher than those from perfect gas model. The center of pressure moved forward with the increase of angle of attack.

Numerical Analysis of Turbulent Flow Through Turbine Flow Meter (터빈유량계의 난류유동에 대한 수치해석)

  • Kim, J.B.;Park, K.A.;Ko, S.
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.573-578
    • /
    • 2000
  • Flow through turbine flow meter is simulated by solving the incompressible Navier-Stockes equations. The solution method is based on the pseudocompressibility approach and uses an implicit-upwind differencing scheme together with the Gauss-Seidel line relaxation method. The equations are solved steadily in rotating reference frames and the centrifugal force and tile Coriolis force are added to the equation of motion. The standard $k-{\varepsilon}$ model is employed to evaluate turbulent viscosity. At first the stability and accuracy of the program is verified with the flow through a square duct with a $90^{\circ}$ bend and on the flat plate.

  • PDF

Relaxation Behavior of a Microbubble under Ultrasonic Field (초음파장하에서 미소기포의 완화적 거동)

  • Karng, Sarng-Woo;Kwak, Ho-Young
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.550-555
    • /
    • 2000
  • Nonlinear oscillation of a microbubble under ultrasound was investigated theoretically. The bubble radius-time curves calculated by the Rayleigh-Plesset equation with a polytropic index and by the Keller-Miksis equation with the analytical solution for the Navier-Stokes equations of the gases were compared with the observed results by the light scattering method. This study has revealed that the bubble behavior such as the expansion ratio and the bouncing motion after the first collapse under ultrasound depends crucially on the retarded time of the bubble motion to the applied ultrasound.

  • PDF

MULTIDIMENSIONAL INTERPOLATIONS FOR THE HIGH ORDER SCHEMES IN ADAPTIVE GRIDS (적응 격자 고차 해상도 해법을 위한 다차원 내삽법)

  • Chang, S.M.;Morris, P.J.
    • Journal of computational fluids engineering
    • /
    • v.11 no.4 s.35
    • /
    • pp.39-47
    • /
    • 2006
  • In this paper, the authors developed a multidimensional interpolation method inside a finite volume cell in the computation of high-order accurate numerical flux such as the fifth order WEND (weighted essentially non-oscillatory) scheme. This numerical method starts from a simple Taylor series expansion in a proper spatial order of accuracy, and the WEND filter is used for the reconstruction of sharp nonlinear waves like shocks in the compressible flow. Two kinds of interpolations are developed: one is for the cell-averaged values of conservative variables divided in one mother cell (Type 1), and the other is for the vertex values in the individual cells (Type 2). The result of the present study can be directly used to the cell refinement as well as the convective flux between finer and coarser cells in the Cartesian adaptive grid system (Type 1) and to the post-processing as well as the viscous flux in the Navier-Stokes equations on any types of structured and unstructured grids (Type 2).

Finite Element Analysis of Transient Viscous Flow with Free Surface using Filling Pattern Technique (형상 충전 기법을 이용한 자유표면의 비정상 점성 유동장의 유한 요소 해석)

  • Kim, Ki-Don;Jeong, Jun-Ho;Yang, Dong-Yol
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.551-556
    • /
    • 2001
  • The filling pattern technique based on the finite element method and Eulerian mesh advancement approach has been developed to analyze incompressible transient viscous flow with free surfaces. The governing equation for flow analysis is Navier-Stokes equation including inertia and gravity effects. The penalty and predictor-corrector methods are used effectively for finite element formulation. The flow front surface and the volume inflow rate are calculated using the filling pattern technique to select an adequate pattern among four filling patterns at each triangular control volume. Using the proposed numerical technique, the collapse of a dam has been analyzed to predict flow phenomenon of fluid and the predicted front positions versus time have been compared with the reported experimental result.

  • PDF

Bow Wave Breaking and Viscous Interaction of Stern Wave

  • Kwag, Seung-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.448-455
    • /
    • 2000
  • The bow wave breaking and the viscous interaction of stern wave are studied by simulating the free-surface flows. The Navier-Stokes equation is solved by a finite difference method in which the body-fitted coordinate system, the wall function and the triple-grid system are invoked. After validation, the calculations are extended to turbulent flows. The wave elevation at the Reynolds number of $10^4$ is much less than that at $10^6$ although the Froude number is the same. The numerical appearance of the sub-breaking waves is qualitatively supported by experimental observation. They are also applied to study the stern flow of S-103 for which extensive experimental data are available. Although the interaction between separation and the stern wave generation are not yet clear, the effects of the bow wave on the development of the boundary layer flows are concluded to be significant.

  • PDF

A Computational Study on Turbulent Flows around Single and Tandem Two-Dimensional Hydrofoils with Shallow Submergence

  • Kim, H.T.;Park, J.B.;Kim, W.J.
    • Journal of Ship and Ocean Technology
    • /
    • v.4 no.1
    • /
    • pp.11-20
    • /
    • 2000
  • Reynolds-averaged Navier-Stokes equations are numerically solved using a secondorder finite difference method for the analysis of turbulent flows around single and tandem hydrofoils advancing under the free surface. The location of the free surface, not known a priori, is computed from the kinematic free surface condition and the computational grid is conformed at each iteration to the free surface deformation. The eddy viscosity model of Baldwin-Lomax is employed for the turbulence closure. The method is validated through the comparision of the numerical results with the experimental data for a single hydrofoil of a Joukowski foil section. A computational study is also carried out to investigate the effect of the submergence depth and the Froude number on the lift and the drag of the hydrofoil. For tandem hydrofoils, computations are performed for several separation distances between the forward and aft foils to see the interference effect. The result shows clearly how the lift and drag change with the separation distance.

  • PDF

Flow Visualization and Numerical Calculation in a Channel Perturbed by Curvilinear Blockages (장애물을 갖는 덕트내의 유동가시화 및 수치해석에 관한 해석)

  • Moon, C.;Park, J.C.;Kim, C.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.6 no.3
    • /
    • pp.218-226
    • /
    • 1994
  • Laminar flow and heat transfer in a channel with blockages are obtained numerically in a Reynolds-number range of $100{\leq}Re{\leq}400$. A boundary-fitted curvilinear coordinate system is generated for irregular boundary of the physical region, and solutions of Navier-Stokes equation and energy equation are obtained by finite analytic method in the transformed computational domain. The flow separates in downstream of the blockage and the length of separated-flow region increases with Reynolds number. The heat flux is high on the top of the blockages and increase in the heat transfer occurs where the fluid reattaches the wall. Comparison between computed streamlines and experimental flow-visualization is also presented and discussed.

  • PDF

Optimization for Flow Uniformity on the Selective Catalytic Reduction (SCR) System of a Steam Supply Boiler (열병합 보일러 SCR 장치의 유동 균일화를 위한 최적화 연구)

  • Park, Young-Bin;Jang, Choon-Man
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.415-420
    • /
    • 2009
  • Selective Catalytic Reduction(SCR) has been used for the reduction of $NO_x$ in a steam supply boiler. Recently, the reduction of $NO_x$ becomes an important research field because of its negative effect on an environment. Shape optimization of circular poles installed in the chamber, which is located in upstream of a SCR, has been performed using response surface method and three-dimensional Navier-Stokes analysis to enhance gas flow uniformity. Three design parameters, diameter, arranging angle and stretching ratio of circular poles, are considered in the present study. Throughout the shape optimization of a circular pole, gas flow uniformity is successfully increased by decreasing local recirculation flow in a square duct chamber. Recirculation flow observed in the corner of the square duct can be reduced by proper installation of a guide vane or a blunt body. Detailed flow characteristics are also analyzed and discussed.

  • PDF