• Title/Summary/Keyword: n-commuting

Search Result 48, Processing Time 0.024 seconds

GENERALIZED MATRIX FUNCTIONS, IRREDUCIBILITY AND EQUALITY

  • Jafari, Mohammad Hossein;Madadi, Ali Reza
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.6
    • /
    • pp.1615-1623
    • /
    • 2014
  • Let $G{\leq}S_n$ and ${\chi}$ be any nonzero complex valued function on G. We first study the irreducibility of the generalized matrix polynomial $d^G_{\chi}(X)$, where $X=(x_{ij})$ is an n-by-n matrix whose entries are $n^2$ commuting independent indeterminates over $\mathbb{C}$. In particular, we show that if $\mathcal{X}$ is an irreducible character of G, then $d^G_{\chi}(X)$ is an irreducible polynomial, where either $G=S_n$ or $G=A_n$ and $n{\neq}2$. We then give a necessary and sufficient condition for the equality of two generalized matrix functions on the set of the so-called ${\chi}$-singular (${\chi}$-nonsingular) matrices.

On n-skew Lie Products on Prime Rings with Involution

  • Ali, Shakir;Mozumder, Muzibur Rahman;Khan, Mohammad Salahuddin;Abbasi, Adnan
    • Kyungpook Mathematical Journal
    • /
    • v.62 no.1
    • /
    • pp.43-55
    • /
    • 2022
  • Let R be a *-ring and n ≥ 1 be an integer. The objective of this paper is to introduce the notion of n-skew centralizing maps on *-rings, and investigate the impact of these maps. In particular, we describe the structure of prime rings with involution '*' such that *[x, d(x)]n ∈ Z(R) for all x ∈ R (for n = 1, 2), where d : R → R is a nonzero derivation of R. Among other related results, we also provide two examples to prove that the assumed restrictions on our main results are not superfluous.

NOTES ON SYMMETRIC SKEW n-DERIVATION IN RINGS

  • Koc, Emine;Rehman, Nadeem ur
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.4
    • /
    • pp.1113-1121
    • /
    • 2018
  • Let R be a prime ring (or semiprime ring) with center Z(R), I a nonzero ideal of R, T an automorphism of $R,S:R^n{\rightarrow}R$ be a symmetric skew n-derivation associated with the automorphism T and ${\Delta}$ is the trace of S. In this paper, we shall prove that S($x_1,{\ldots},x_n$) = 0 for all $x_1,{\ldots},x_n{\in}R$ if any one of the following holds: i) ${\Delta}(x)=0$, ii) [${\Delta}(x),T(x)]=0$ for all $x{\in}I$. Moreover, we prove that if $[{\Delta}(x),T(x)]{\in}Z(R)$ for all $x{\in}I$, then R is a commutative ring.

On n-Amitsur Rings

  • Ochirbat, Baatar;Mendes, Deolinda I.C.;Tumurbat, Sodnomkhorloo
    • Kyungpook Mathematical Journal
    • /
    • v.60 no.4
    • /
    • pp.711-721
    • /
    • 2020
  • The concepts of an Amitsur ring and a hereditary Amitsur ring, which were introduced and studied by S. Tumurbat in a recent paper, are generalized. For a positive integer n, a ring A is said to be an n-Amitsur ring if γ(A[Xn]) = (γ(A[Xn]) ∩ A)[Xn] for all radicals γ, where A[Xn] is the polynomial ring over A in n commuting indeterminates. If a ring A satisfies the above equation for all hereditary radicals γ, then A is said to be a hereditary n-Amitsur ring. Characterizations and examples of these rings are provided. Moreover, new radicals associated with n-Amitsur rings are introduced and studied. One of these is a special radical and its semisimple class is polynomially extensible.

SUPERCYCLICITY OF JOINT ISOMETRIES

  • ANSARI, MOHAMMAD;HEDAYATIAN, KARIM;KHANI-ROBATI, BAHRAM;MORADI, ABBAS
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.5
    • /
    • pp.1481-1487
    • /
    • 2015
  • Let H be a separable complex Hilbert space. A commuting tuple $T=(T_1,{\cdots},T_n)$ of bounded linear operators on H is called a spherical isometry if $\sum_{i=1}^{n}T^*_iT_i=I$. The tuple T is called a toral isometry if each $T_i$ is an isometry. In this paper, we show that for each $n{\geq}1$ there is a supercyclic n-tuple of spherical isometries on $\mathbb{C}^n$ and there is no spherical or toral isometric tuple of operators on an infinite-dimensional Hilbert space.

Common Fixed Point Theorems of Commuting Mappinggs

  • Park, Wee-Tae
    • The Mathematical Education
    • /
    • v.26 no.1
    • /
    • pp.41-45
    • /
    • 1987
  • In this paper, we give several fixed point theorems in a complete metric space for two multi-valued mappings commuting with two single-valued mappings. In fact, our main theorems show the existence of solutions of functional equations f($\chi$)=g($\chi$)$\in$S$\chi$∩T$\chi$ and $\chi$=f($\chi$)=g($\chi$)$\in$S$\chi$∩T$\chi$ under certain conditions. We also answer an open question proposed by Rhoades-Singh-Kulsherestha. Throughout this paper, let (X, d) be a complete metric space. We shall follow the following notations : CL(X) = {A; A is a nonempty closed subset of X}, CB(X)={A; A is a nonempty closed and founded subset of X}, C(X)={A; A is a nonempty compact subset of X}, For each A, B$\in$CL(X) and $\varepsilon$>0, N($\varepsilon$, A) = {$\chi$$\in$X; d($\chi$, ${\alpha}$) < $\varepsilon$ for some ${\alpha}$$\in$A}, E$\sub$A, B/={$\varepsilon$ > 0; A⊂N($\varepsilon$ B) and B⊂N($\varepsilon$, A)}, and (equation omitted). Then H is called the generalized Hausdorff distance function fot CL(X) induced by a metric d and H defined CB(X) is said to be the Hausdorff metric induced by d. D($\chi$, A) will denote the ordinary distance between $\chi$$\in$X and a nonempty subset A of X. Let R$\^$+/ and II$\^$+/ denote the sets of nonnegative real numbers and positive integers, respectively, and G the family of functions ${\Phi}$ from (R$\^$+/)$\^$s/ into R$\^$+/ satisfying the following conditions: (1) ${\Phi}$ is nondecreasing and upper semicontinuous in each coordinate variable, and (2) for each t>0, $\psi$(t)=max{$\psi$(t, 0, 0, t, t), ${\Phi}$(t, t, t, 2t, 0), ${\Phi}$(0, t, 0, 0, t)} $\psi$: R$\^$+/ \longrightarrow R$\^$+/ is a nondecreasing upper semicontinuous function from the right. Before sating and proving our main theorems, we give the following lemmas:

  • PDF

GENERALIZED SKEW DERIVATIONS AS JORDAN HOMOMORPHISMS ON MULTILINEAR POLYNOMIALS

  • De Filippis, Vincenzo
    • Journal of the Korean Mathematical Society
    • /
    • v.52 no.1
    • /
    • pp.191-207
    • /
    • 2015
  • Let $\mathcal{R}$ be a prime ring of characteristic different from 2, $\mathcal{Q}_r$ be its right Martindale quotient ring and $\mathcal{C}$ be its extended centroid. Suppose that $\mathcal{G}$ is a nonzero generalized skew derivation of $\mathcal{R}$, ${\alpha}$ is the associated automorphism of $\mathcal{G}$, f($x_1$, ${\cdots}$, $x_n$) is a non-central multilinear polynomial over $\mathcal{C}$ with n non-commuting variables and $$\mathcal{S}=\{f(r_1,{\cdots},r_n)\left|r_1,{\cdots},r_n{\in}\mathcal{R}\}$$. If $\mathcal{G}$ acts as a Jordan homomorphism on $\mathcal{S}$, then either $\mathcal{G}(x)=x$ for all $x{\in}\mathcal{R}$, or $\mathcal{G}={\alpha}$.

Submanifolds of Codimension 3 in a Complex Space Form with Commuting Structure Jacobi Operator

  • Ki, U-Hang;Song, Hyunjung
    • Kyungpook Mathematical Journal
    • /
    • v.62 no.1
    • /
    • pp.133-166
    • /
    • 2022
  • Let M be a semi-invariant submanifold with almost contact metric structure (𝜙, 𝜉, 𝜂, g) of codimension 3 in a complex space form Mn+1(c) for c ≠ 0. We denote by S and R𝜉 be the Ricci tensor of M and the structure Jacobi operator in the direction of the structure vector 𝜉, respectively. Suppose that the third fundamental form t satisfies dt(X, Y) = 2𝜃g(𝜙X, Y) for a certain scalar 𝜃 ≠ 2c and any vector fields X and Y on M. In this paper, we prove that if it satisfies R𝜉𝜙 = 𝜙R𝜉 and at the same time S𝜉 = g(S𝜉, 𝜉)𝜉, then M is a real hypersurface in Mn(c) (⊂ Mn+1(c)) provided that $\bar{r}-2(n-1)c{\leq}0$, where $\bar{r}$ denotes the scalar curvature of M.

DERIVATIONS ON NONCOMMUTATIVE SEMI-PRIME PINGS

  • Chang, Ick-Soon;Byun, Sang-Hoon
    • Journal of applied mathematics & informatics
    • /
    • v.6 no.1
    • /
    • pp.239-246
    • /
    • 1999
  • The purpose of this paper is to prove the following result: Let R be a 2-torsion free noncommutative semi-prime ring and D:RlongrightarrowR a derivation. Suppose that $[[D(\chi),\chi],\chi]\in$ Z(R) holds for all $\chi \in R$. Then D is commuting on R.

HIGHEST WEIGHT VECTORS OF IRREDUCIBLE REPRESENTATIONS OF THE QUANTUM SUPERALGEBRA μq(gl(m, n))

  • Moon, Dong-Ho
    • Journal of the Korean Mathematical Society
    • /
    • v.40 no.1
    • /
    • pp.1-28
    • /
    • 2003
  • The Iwahori-Hecke algebra $H_{k}$ ( $q^2$) of type A acts on the k-fold tensor product space of the natural representation of the quantum superalgebra (equation omitted)$_{q}$(gl(m, n)). We show the Hecke algebra $H_{k}$ ( $q^2$) and the quantum superalgebra (equation omitted)$_{q}$(gl(m n)) have commuting actions on the tensor product space, and determine the centralizer of each other. Using this result together with Gyoja's q-analogue of the Young symmetrizers, we construct highest weight vectors of irreducible summands of the tensor product space.