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Abstract. Let R be a ∗-ring and n ≥ 1 be an integer. The objective of this paper is to

introduce the notion of n-skew centralizing maps on ∗-rings, and investigate the impact

of these maps. In particular, we describe the structure of prime rings with involution ′
∗
′

such that ∗[x, d(x)]n ∈ Z(R) for all x ∈ R (for n = 1, 2), where d : R → R is a nonzero

derivation of R. Among other related results, we also provide two examples to prove that

the assumed restrictions on our main results are not superfluous.

1. Introduction

This research is motivated by the recent work’s of Ali-Dar [1], Qi-Zhang [5] and
Hou-Wang [3]. However, our approach is different from that of the authors of [5]
and [3]. A ring R with an involution ′∗′ is called a ∗-ring or ring with involution ′∗′.
Throughout, we let R be a ring with involution ′∗′ and Z(R), the center of the ring
R. Moreover, the sets of all hermitian and skew-hermitian elements of R will be
denoted by H(R) and S(R), respectively. The involution is called the first kind if
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Z(R) ⊆ H(R), otherwise S(R)∩Z(R) 6= (0)(see [2] for details). A ring R is said to
be 2-torsion free if 2x = 0 (where x ∈ R) implies x = 0. A ring R is called prime if
aRb = (0) (where a, b ∈ R) implies a = 0 or b = 0. A derivation on R is an additive
mapping d : R → R such that d(xy) = d(x)y + xd(y) for all x, y ∈ R.

For any x, y ∈ R, the symbol [x, y] will denote the Lie product xy− yx and the
symbol ∗[x, y] will denote the skew Lie product xy− yx∗, where ′∗′ is an involution
on R. In a recent paper, Hou and Wang [3] extended the concept of skew Lie prod-
uct as follows: for an integer n ≥ 1, the n-skew Lie product of any two elements x
and y is defined by ∗[x, y]n =∗ [x,∗ [x, y]n−1], where ∗[x, y]0 = y, ∗[x, y] = xy − yx∗

and ∗[x, y]2 = x2y−2xyx∗+y(x∗)2. Obviously, for n = 1, the skew Lie product and
n-skew Lie product coincides. Note that, for n=2, we call it 2-skew Lie product.
In [3], Hou and Wang studied the strong 2-skew commutativity preserving maps
in prime rings with involution. In fact, they described the form of strong 2-skew
commutativity preserving maps on a unital prime ring with involution that contains
a non-trivial symmetric idempotent. In [5], Qi and Zhang studied the properties
of n-skew Lie product on prime rings with involution and as an application, they
characterized n-skew commuting additive maps, i.e.; an additive mapping f on R

into itself such that ∗[x, f(x)]n = 0 for all x ∈ R. In definition of n-skew commuting
mapping (defined in [5]), if we consider that f is any map (not necessarily addi-
tive) then it is more reasonable to call f a n-skew commuting. To give its precise
definition, we make a slight modification in Qi and Zhang’s definition for n-skew
commuting mapping. For an integer n ≥ 1, a map f of a ∗-ring R into itself is called
n-skew commuting mapping on R if ∗[x, f(x)]n = 0 for every x ∈ R. For an integer
n ≥ 1, a map f of a ∗-ring R into itself is called n-skew centralizing mapping on
R if ∗[x, f(x)]n ∈ Z(R) for every x ∈ R. In particular, for n = 1, 2, we call them
1-skew commuting (resp. 1-skew centralizing) and 2-skew commuting (resp. 2-skew
centralizing) mapping.

The objective of this paper is to introduce the notion of n-skew centralizing
mappings on ∗-rings. Further, we investigate the impact of these mappings and
describe the nature of prime ∗-rings which satisfy certain ∗-differential identities.
In particular, for an integer n ≥ 1 we prove that if a 2-torsion free prime ring R

with involution ′∗′ of the second kind which admits a nonzero derivation d such that

∗[x, d(x)]n ∈ Z(R) for all x ∈ R (n = 1, 2), then R is commutative. Moreover, some
more related results are obtained. Further more, examples prove that, the assumed
curtailment can not be relaxed as given.

2. Main Results

In order to study the effect of n-skew centralizing mappings, we need the fol-
lowing two lemmas for developing the proofs of our main results. We begin our
discussion with the following lemmas:

Lemma 2.1. Let R be a 2-torsion free prime ring with involution ′∗′ of the second

kind. If x2x∗ ∈ Z(R) for all x ∈ R, then R is commutative.
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Proof. Linearization of x2x∗ ∈ Z(R) gives that x2y∗+xyx∗+xyy∗+yxx∗+yxy∗+
y2x∗ ∈ Z(R) for all x, y ∈ R. Taking x = −x in the last expression and combine it
with the above relation, we get

(2.1) x2y∗ + xyx∗ + yxx∗ ∈ Z(R) for all x, y ∈ R.

Substituting ky for y, where k ∈ S(R)∩Z(R), we obtain (−x2y∗+xyx∗+yxx∗)k ∈
Z(R) for all x, y ∈ R. Invoking the primeness of R and using the fact that S(R) ∩
Z(R) 6= (0), we get

(2.2) −x2y∗ + xyx∗ + yxx∗ ∈ Z(R) for all x, y ∈ R.

Combining (2.1) and (2.2), we conclude that x2y∗ ∈ Z(R). Replacing y by y∗, we
get x2y ∈ Z(R) for all x, y ∈ R. This can be further written as [x2y, w] = 0 for all
x, y, w ∈ R. Replacing y by ry, we get x2r[y, w] = 0 for all x, y, w, r ∈ R. Hence by
the primeness of the ring R, we are force to conclude that R is commutative. 2

Lemma 2.2. Let R be a 2-torsion free prime ring with involution ′∗′ of the second

kind. If ∗[x, x
∗]2 ∈ Z(R) for all x ∈ R, then R is commutative.

Proof. By the hypothesis, we have

(2.3) x2x∗ − 2x(x∗)2 + (x∗)3 ∈ Z(R) for all x ∈ R.

Replacing x by kx in (2.3) where k ∈ S(R) ∩ Z(R), we get

(2.4) −x2x∗k3 − 2x(x∗)2k3 − (x∗)3k3 ∈ Z(R) for all x ∈ R.

By (2.3) and (2.4), we conclude that −4x(x∗)2k3 ∈ Z(R) for all x ∈ R. Since R is
2-torsion free prime ring and S(R) ∩ Z(R) 6= (0), we obtain x(x∗)2 ∈ Z(R) for all
x ∈ R. On linearizing we get

(2.5) xx∗y∗ + xy∗x∗ + x(y∗)2 + y(x∗)2 + yx∗y∗ + yy∗x∗ ∈ Z(R) for all x, y ∈ R.

Taking x = −x in (2.5) and using (2.5), we obtain

(2.6) xx∗y∗ + xy∗x∗ + y(x∗)2 ∈ Z(R) for all x, y ∈ R.

Substitute ky for y, where k ∈ S(R)∩Z(R) in (2.6), we get 2y(x∗)2k ∈ Z(R) for all
x, y ∈ R. This implies that yx2 ∈ Z(R) for all x, y ∈ R. Henceforth, using the same
arguments as we have used in Lemma 2.1, we conclude that R is commutative. This
proves the lemma. 2

Theorem 2.3. Let R be a 2-torsion free prime ring with involution ′∗′ of the second
kind. If R admits a nonzero derivation d such that ∗[x, d(x)]n ∈ Z(R) for all x ∈ R

(n = 1, 2), then R is commutative.

proof. Case (i) First we discuss the case, “when n = 1” and “i.e.”,

∗[x, d(x)] ∈ Z(R) for all x ∈ R.
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Linearizing the above expression, we get

∗[x, d(y)] + ∗[y, d(x)] ∈ Z(R) for all x, y ∈ R.

That is,

xd(y)− d(y)x∗ + yd(x)− d(x)y∗ ∈ Z(R) for all x, y ∈ R.

This further implies that

[xd(y), r] − [d(y)x∗, r] + [yd(x), r] − [d(x)y∗, r] = 0 for all x, y, r ∈ R.

Hence

(2.7) x[d(y), r] + [x, r]d(y) − d(y)[x∗, r]− [d(y), r]x∗

+y[d(x), r] + [y, r]d(x) − d(x)[y∗, r]− [d(x), r]y∗ = 0 for all x, y, r ∈ R.

Replacing y by hy in (2.7), where h ∈ H(R) ∩ Z(R) and using it, we have

(x[y, r] + [x, r]y − y[x∗, r]− [y, r]x∗)d(h) = 0 for all x, y, r ∈ R.

Using the primeness of R, we obtain either d(h) = 0 or

x[y, r] + [x, r]y − y[x∗, r]− [y, r]x∗ = 0 for all x, y, r ∈ R.

First we consider the situation

(2.8) x[y, r] + [x, r]y − y[x∗, r]− [y, r]x∗ = 0 for all x, y, r ∈ R.

Substituting kx for x in (2.8), where k ∈ S(R)∩Z(R) and combining it with (2.8),
we get

2(x[y, r] + [x, r]y)k = 0 for all x, y, r ∈ R.

Since R is 2-torsion free prime ring, we deduce that

x[y, r] + [x, r]y = 0 for all x, y, r ∈ R.

Replacing x by z, where z ∈ Z(R), we get [y, r]z = 0 for all y, r ∈ R. Henceforth,
we conclude that R is commutative. Now consider the case d(h) = 0 for all h ∈
H(R) ∩ Z(R). This implies that d(k) = 0 for all k ∈ S(R) ∩ Z(R). Replacing y by
ky in (2.7), where k ∈ S(R) ∩ Z(R) with d(k) = 0 and adding with (2.7), we get

2(x[d(y), r] + [x, r]d(y) − d(y)[x∗, r]− [d(y), r]x∗ + y[d(x), r] + [y, r]d(x))k = 0

for all x, y, r ∈ R. Since R is 2-torsion free ring and S(R) ∩ Z(R) 6= (0), the above
relation implies that

x[d(y), r] + [x, r]d(y) − d(y)[x∗, r] − [d(y), r]x∗ + y[d(x), r] + [y, r]d(x) = 0 for all



On n-skew Lie Product on Prime Rings with Involution 47

x, y ∈ R. Taking y = h, where h ∈ H(R) ∩ Z(R) and using the fact that d(h) = 0,
we get [d(x), r]h = 0 for all x, r ∈ R and h ∈ H(R) ∩ Z(R). This yields that
[d(x), r] = 0 for all x, r ∈ R. Hence in view of Posner’s [4] first theorem, R is
commutative.

Case (ii) Now, we prove the result for n = 2 i.e.,

∗[x, d(x)]2 ∈ Z(R) for all x ∈ R.

On expansion we acquire

(2.9) x2d(x) − 2xd(x)x∗ + d(x)(x∗)2 ∈ Z(R) for all x ∈ R.

Replacing x by xh in (2.9), where h ∈ H(R) ∩ Z(R), we obtain

(x3 − 2x2x∗ + x(x∗)2)d(h)h2 ∈ Z(R) for all x ∈ R.

Then by the primeness of R we are force to conclude that either d(h)h2 = 0 or
x3 − 2x2x∗ + x(x∗)2 ∈ Z(R) for all x ∈ R. First we consider the case

(2.10) x3 − 2x2x∗ + x(x∗)2 ∈ Z(R) for all x ∈ R.

Substituting kx for x in (2.10), where k ∈ S(R) ∩ Z(R), we get (x3 + 2x2x∗ +
x(x∗)2)k3 ∈ Z(R) for all x ∈ R. This further implies that

(2.11) x3 + 2x2x∗ + x(x∗)2 ∈ Z(R) for all x ∈ R.

Subtracting (2.10) from (2.11) and using 2-torsion freeness of R, we obtain x2x∗ ∈
Z(R) for all x ∈ R. Therefore, by Lemma 2.1, R is commutative. Now consider
the second case d(h)h2 = 0 for all h ∈ H(R)∩Z(R). This implies that d(h) = 0 for
all h ∈ H(R) ∩ Z(R). Therefore, d(k) = 0 for all k ∈ S(R) ∩Z(R). Replacing x by
kx in (2.9), where k ∈ S(R) ∩ Z(R) and using the fact that d(k) = 0, we obtain

(2.12) x2d(x)k3 + 2xd(x)x∗k3 + d(x)(x∗)2k3 ∈ Z(R) for all x ∈ R.

Application of (2.9) yields 4xd(x)x∗k3 ∈ Z(R) for all x ∈ R. Since R is 2-torsion
free ring and S(R) ∩ Z(R) 6= (0), we get

(2.13) xd(x)x∗ ∈ Z(R) for all x ∈ R.

Putting x+ h in place of x, where h ∈ H(R) ∩ Z(R), we arrive at

(2.14) xd(x)h + d(x)x∗h+ d(x)h2 ∈ Z(R) for all x ∈ R.

Taking x = −x in (2.14) and then combining it with the obtained relation, we get
2d(x)h2 ∈ Z(R). This implies that d(x) ∈ Z(R) for all x ∈ R, since the involution
′∗′ is of the second kind. Hence, by Posner’s [4] first theorem, R is commutative.2
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Theorem 2.4. Let R be a 2-torsion free prime ring with involution ′∗′ of the second
kind. If R admits a nonzero derivation d such that d(∗[x, x

∗]n) ∈ Z(R) for all x ∈ R

(n = 1, 2), then R is commutative.

proof. Case (i) Firstly we are focus to discuss the case when n = 1 i.e.,

d(∗[x, x
∗]) ∈ Z(R) for all x ∈ R.

Linearizing this, we get

d(∗[x, y
∗]) + d(∗[y, x∗]) ∈ Z(R) for all x, y ∈ R.

This implies that
(2.15)
d(x)[y∗, r]+[d(x), r]y∗+x[d(y∗), r]+[x, r]d(y∗)−d(y∗)[x∗, r]−[d(y∗), r]x∗−y∗[d(x∗), r]

−[y∗, r]d(x∗) + d(y)[x∗, r] + [d(y), r]x∗ + y[d(x∗), r] + [y, r]d(x∗)− d(x∗)[y∗, r]−

[d(x∗), r]y∗ − x∗[d(y∗), r]− [x∗, r]d(y∗) = 0 for all x, y, r ∈ R.

Replacing y by hy, where h ∈ H(R) ∩ Z(R) in (2.15), we obtain

(x[y∗, r] + [x, r]y∗ − y∗[x∗, r]− [y∗, r]x∗ + y[x∗, r]+

[y, r]x∗ − x∗[y∗, r]− [x∗, r]y∗)d(h) = 0 for all x, y, r ∈ R.

Using the primeness of R, we have either d(h) = 0 or
(2.16)
x[y∗, r] + [x, r]y∗ − y∗[x∗, r]− [y∗, r]x∗ + y[x∗, r] + [y, r]x∗ − x∗[y∗, r]− [x∗, r]y∗ = 0

for all x, y, r ∈ R. We first consider the relation (2.16). Replacing y by ky, where
k ∈ S(R)∩Z(R) in (2.16), we get 2(y[x∗, r]+ [y, r]x∗)k = 0 for all x, y, r ∈ R. Since
R is 2-torsion free ring and S(R) ∩ Z(R) 6= (0), we obtain y[x∗, r] + [y, r]x∗ = 0
for all x, y, r ∈ R. Taking x = k, where k ∈ S(R) ∩ Z(R), we get −[y, r]k = 0 for
all y, r ∈ R. Thus −[y, r] = 0 for all y, r ∈ R. That is, R is commutative. Now
consider d(h) = 0 for all h ∈ H(R) ∩ Z(R). This implies that d(k) = 0 for all
k ∈ S(R)∩Z(R). Replacing y by ky, where k ∈ S(R)∩Z(R) in (2.15) and making
use of (2.15), we get

2(d(y)[x∗, r] + [d(y), r]x∗ + y[d(x∗), r] + [y, r]d(x∗))k = 0 for all x, y, r ∈ R.

This implies that

d(y)[x∗, r] + [d(y), r]x∗ + y[d(x∗), r] + [y, r]d(x∗) = 0 for all x, y, r ∈ R.

Taking x = h where h ∈ H(R)∩Z(R) and using d(h) = 0, we arrive at h[d(y), r] = 0
for all y, r ∈ R. Then by the primeness of R and the fact that S(R) ∩ Z(R) 6= (0),
we obtain [d(y), r] = 0 for all y, r ∈ R. Hence by Posner’s [4] first theorem, R is
commutative.
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Case (ii) Next, for n = 2 we have

d(∗[x, x
∗]2) ∈ Z(R) for all x ∈ R.

On expansion we get

(2.17) d(x2x∗)− 2d(x(x∗)2) + d((x∗)3) ∈ Z(R) for all x ∈ R.

Linearization of (2.17) yields
(2.18)
d(x2y∗)+d(xyx∗)+d(xyy∗)+d(yxx∗)+d(yxy∗)+d(y2x∗)−2d(xx∗y∗)−2d(xy∗x∗)

−2d(x(y∗)2)− 2d(y(x∗)2)− 2d(yx∗y∗)− 2d(yy∗x∗) + d((x∗)2y∗) + d(x∗y∗x∗)

+d(x∗(y∗)2) + d(y∗(x∗)2) + d(y∗x∗y∗) + d((y∗)2x∗) ∈ Z(R) for all x, y ∈ R.

Substituting −x for x in (2.18) and combining the obtained relation with (2.18), we
obtain

2(d(x2y∗) + d(xyx∗) + d(yxx∗)− 2d(xx∗y∗)− 2d(xy∗x∗)− 2d(y(x∗)2)

+d((x∗)2y∗) + d(x∗y∗x∗) + d(y∗(x∗)2)) ∈ Z(R) for all x, y ∈ R.

Since R is 2-torsion free, the last relation gives

(2.19) d(x2y∗) + d(xyx∗) + d(yxx∗)− 2d(xx∗y∗)− 2d(xy∗x∗)− 2d(y(x∗)2)

+d((x∗)2y∗) + d(x∗y∗x∗) + d(y∗(x∗)2) ∈ Z(R) for all x, y ∈ R.

Replacing y by hy, where h ∈ H(R) ∩ Z(R) in (2.19) and intermix it with (2.19),
we come to

(x2y∗ + xyx∗ + yxx∗ − 2xx∗y∗ − 2xy∗x∗ − 2y(x∗)2

+(x∗)2y∗ + x∗y∗x∗ + y∗(x∗)2)d(h) ∈ Z(R) for all x, y ∈ R.

By the primeness of the ring R, we get either d(h) = 0 or
(2.20)
x2y∗+xyx∗+yxx∗−2xx∗y∗−2xy∗x∗−2y(x∗)2+(x∗)2y∗+x∗y∗x∗+y∗(x∗)2 ∈ Z(R)

for all x, y ∈ R. Replacing y by ky, where k ∈ S(R) ∩ Z(R) in (2.20), we arrive at

2(xyx∗ + yxx∗ − 2y(x∗)2) ∈ Z(R) for all x, y ∈ R.

This implies that

xyx∗ + yxx∗ − 2y(x∗)2 ∈ Z(R) for all x, y ∈ R.

Substituting kx for x in the last relation, we conclude that y(x∗)2 ∈ Z(R) for all
x, y ∈ R. Now proceed as we have already done in Lemma 2.1, we conclude that
R is commutative. “Considering the second case in which we have d(h) = 0 for
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all h ∈ H(R) ∩ Z(R).” This implies that d(k) = 0 for all k ∈ S(R) ∩ Z(R). Now
replacing x by kx in (2.19) and using “d(k) = 0, we get”

(−d(x2y∗) + d(xyx∗) + d(yxx∗) + 2d(xx∗y∗) + 2d(xy∗x∗)− 2d(y(x∗)2)

−d((x∗)2y∗)− d(x∗y∗x∗)− d(y∗(x∗)2))k ∈ Z(R) for all x, y ∈ R.

Since S(R) ∩ Z(R) 6= (0), the last expression implies that

−d(x2y∗) + d(xyx∗) + d(yxx∗) + 2d(xx∗y∗) + 2d(xy∗x∗)− 2d(y(x∗)2)

−d((x∗)2y∗)− d(x∗y∗x∗)− d(y∗(x∗)2) ∈ Z(R) for all x, y ∈ R.

Combining this with (2.19) and using the fact that R is 2-torsion free ring, we arrive
at

d(xyx∗) + d(yxx∗)− 2d(y(x∗)2) ∈ Z(R) for all x, y ∈ R.

Replacing x by kx, where k ∈ S(R) ∩ Z(R) and combining it with previous ex-
pression, we obtain 2d(y(x∗)2) ∈ Z(R) for all x, y ∈ R. Replacing x by h, where
h ∈ H(R) ∩ Z(R) we come to d(y)h2 ∈ Z(R) for all y ∈ R. This implies that
d(y) ∈ Z(R) for all y ∈ R. Hence, R is commutative by Posner’s [4] first theorem.
2

Theorem 2.5. Let R be a 2-torsion free prime ring with involution ′∗′ of the

second kind. If R admits a derivation d such that ∗[x, d(x)]2 +∗ [x, x
∗]2 ∈ Z(R) for

all x ∈ R, then R is commutative.

Proof. By the hypothesis we assume that

(2.21) ∗[x, d(x)]2 +∗ [x, x
∗]2 ∈ Z(R) for all x ∈ R.

If we take d = 0. Then, application of Lemma 2.2, yields the required result. Now
consider the case d 6= 0 and on expansion of (2.21), we get

(2.22) x2d(x)−2xd(x)x∗+d(x)(x∗)2+x2x∗−2x(x∗)2+(x∗)3 ∈ Z(R) for all x ∈ R.

Replacing x by xh in (2.22), where h ∈ H(R) ∩ Z(R), we obtain (x3 − x2x∗ +
x(x∗)2)d(h)h2 ∈ Z(R) for all x ∈ R. Now by the primeness of R we get either
x3 − 2x2x∗ + x(x∗)2 ∈ Z(R) for all x ∈ R or d(h)h2 = 0. Now, we suppose that

(2.23) x3 − 2x2x∗ + x(x∗)2 ∈ Z(R) for all x ∈ R.

This is same as the relation (2.10) in Theorem 2.3 and hence we conclude that R

is commutative. Now we consider the case d(h)h2 = 0 for all h ∈ H(R) ∩ Z(R).
Since R is prime ring, so we get d(h) = 0. This also implies that d(k) = 0 for all
k ∈ S(R) ∩Z(R). Replacing x by xk in (2.22) and combining with (2.22) we arrive
at (2xd(x)x∗ − x2x∗ − (x∗)3)k3 ∈ Z(R) for all x ∈ R. Since S(R) ∩ Z(R) 6= (0), so
by the primeness of R, we get

(2.24) 2xd(x)x∗ − x2x∗ − (x∗)3 ∈ Z(R) for all x ∈ R.
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Linearization of (2.24) gives
(2.25)
2xd(x)y∗ + 2xd(y)x∗ + 2xd(y)y∗ + 2yd(x)x∗ + 2yd(x)y∗ + 2yd(y)x∗ − x2y∗ − xyx∗

−xyy∗−yxx∗−yxy∗−y2x∗−(x∗)2y∗−x∗y∗x∗−x∗(y∗)2−y∗(x∗)2−y∗x∗y∗−(y∗)2x∗

∈ Z(R) for all x, y ∈ R. Replacing x by −x in (2.25) and combining the obtained
relation with (2.25), we obtain

2xd(x)y∗+2xd(y)x∗+2yd(x)x∗−x2y∗−xyx∗− yxx∗− (x∗)2y∗−x∗y∗x∗− y∗(x∗)2

∈ Z(R) for all x, y ∈ R. Taking x = h, where h ∈ H(R) ∩ Z(R), we get

(2d(y)− 4y∗ − 2y)h2 ∈ Z(R) for all y ∈ R.

The primeness of R yields that d(y) − 2y∗ − y ∈ Z(R) for all y ∈ R. Replacing y

by ky and on solving, we get y ∈ Z(R) for all y ∈ R. Hence, this conclude that R
is commutative. 2

Theorem 2.6. Let R be a 2-torsion free prime ring with involution ′∗′ of the

second kind. If R admit two distinct derivations d1 and d2 such that ∗[x, d1(x)]2 −∗

[x, d2(x)]2 ∈ Z(R) for all x ∈ R, then R is commutative.

Proof. We assume that

(2.26) ∗[x, d1(x)]2 −∗ [x, d2(x)]2 ∈ Z(R) for all x ∈ R.

If either d1 or d2 is zero, then we get the required result by Theorem 2.3 above.
Now consider both d1, d2 are non-zero. Expansion of (2.26) yields that

(2.27) x2d1(x)−2xd1(x)x
∗+d1(x)(x

∗)2−x2d2(x)+2xd2(x)x
∗−d2(x)(x

∗)2 ∈ Z(R)

for all x ∈ R. Replacing x by xh in (2.27), where h ∈ H(R)∩Z(R) and on simplifying
with the help of (2.27), we get

(x3 − 2x2x∗ + x(x∗)2)(d1(h)− d2(h))h
2 ∈ Z(R) for all x ∈ R.

This implies either x3−2x2x∗+x(x∗)2 ∈ Z(R) for all x ∈ R or (d1(h)−d2(h))h
2 = 0.

If x3−2x2x∗+x(x∗)2 ∈ Z(R) for all x ∈ R, then by using the same steps as we have
used after (2.10), we arrive at x2x∗ ∈ Z(R) for all x ∈ R. Thus R is commutative,
by Lemma 2.1. On the other hand, if (d1(h)−d2(h))h

2 = 0 for all h ∈ H(R)∩Z(R).
Then we are force to conclude that d1(h) = d2(h) and hence d1(k) = d2(k) for all
k ∈ S(R) ∩Z(R). Replacing x by kx in (2.27), and combining with (2.27) by using
the fact that d1(k) = d2(k), we get

4(xd1(x)x
∗ − xd2(x)x

∗)k3 ∈ Z(R) for all x ∈ R.

Since R is 2-torsion free and S(R) ∩ Z(R) 6= (0), the last relation gives

(2.28) xd1(x)x
∗ − xd2(x)x

∗ ∈ Z(R) for all x ∈ R.
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Linearizing (2.28), we obtain
(2.29)
xd1(x)y

∗+yd1(x)x
∗+yd1(x)y

∗+xd1(y)x
∗+xd1(y)y

∗+yd1(y)x
∗−xd2(x)y

∗−xd2(y)x
∗

−xd2(y)y
∗ − yd2(x)x

∗ − yd2(x)y
∗ − yd2(y)x

∗ ∈ Z(R) for all x, y ∈ R.

Replacing x by −x in (2.29) and combining the obtained result with (2.29), we get

2(xd1(x)y
∗ + yd1(x)x

∗ + xd1(y)x
∗ − xd2(x)y

∗ − xd2(y)x
∗ − yd2(x)x

∗) ∈ Z(R)

for all x, y ∈ R. Since R is 2-torsion free ring, the above expression yields

(2.30) xd1(x)y
∗ + yd1(x)x

∗ + xd1(y)x
∗ − xd2(x)y

∗ − xd2(y)x
∗ − yd2(x)x

∗ ∈ Z(R)

for all x, y ∈ R. Replacing x by kx in (2.30) and on solving with the help (2.30)
and using the fact that d1(k) = d2(k), we get (xd1(x) − xd2(x))y

∗ ∈ Z(R) for all
x, y ∈ R. Replacing y by h, where h ∈ H(R) ∩ Z(R). Then by the primeness of
R and S(R) ∩ Z(R) 6= (0) condition force that xd1(x) − xd2(x) ∈ Z(R) for all
x ∈ R. Linearizing this we get xd1(y) + yd1(x) − xd2(y) − yd2(x) ∈ Z(R) for all
x, y ∈ R. Taking y by h where h ∈ H(R)∩Z(R) and using d1(h) = d2(h), we obtain
d1(x) − d2(x) ∈ Z(R) for all x ∈ R. This can be further written as

(2.31) [d1(x), r] − [d2(x), r] = 0 for all x, r ∈ R.

Replacing x by xr in (2.31), we get [x, r](d1(r) − d2(r)) = 0 for all x, r ∈ R.

Substitute xu for x in the last relation, we obtain [x, r]u(d1(r) − d2(r)) = 0 for all
x, r, u ∈ R. Then by the primeness of R, for each fixed r ∈ R, we get either [x, r] = 0
for all x ∈ R or d1(r) − d2(r) = 0. Define A = {r ∈ R | [x, r] = 0 for all x ∈ R}
and B = {r ∈ R | d1(r) − d2(r) = 0}. Clearly, A and B are additive subgroups of
R whose union is R. Hence by Brauer’s trick, either A = R or B = R. If A = R,
then [x, r] = 0 for all x, r ∈ R. This implies that R is commutative. If B = R, then
d1(r) = d2(r) for all r ∈ R, which is a contradiction to our assumption. Hence, we
conclude that R is commutative. 2

Theorem 2.7. Let R be a 2-torsion free prime ring with involution ′∗′ of the second
kind. If R admit derivations d1, d2 such that at least one of them is nonzero and

satisfies d1(∗[x, x
∗]2) +∗ [x, d2(x

∗)]2 ∈ Z(R) for all x ∈ R, then R is commutative.

Proof. We are given that d1 and d2 are derivations of R such that

(2.32) d1(∗[x, x
∗]2) +∗ [x, d2(x

∗)]2 ∈ Z(R) for all x ∈ R.

If d2 is zero then by Theorem 2.4, we get R is commutative. If d1 is zero then we
have ∗[x, d2(x

∗)]2 ∈ Z(R) for all x ∈ R. Expansion of last relation gives

(2.33) x2d2(x
∗)− 2xd2(x

∗)x∗ + d2(x
∗)(x∗)2 ∈ Z(R) for all x ∈ R.

Replacing x by hx, where h ∈ H(R) ∩ Z(R) in (2.33) and combining the obtained
expression, we get ∗[x, x

∗]2d2(h)h
2 ∈ Z(R) for all x ∈ R. Now applying the prime-

ness of the ring R, we get either ∗[x, x
∗]2 ∈ R or d(h)h2 = 0. If ∗[x, x

∗]2 ∈ Z(R)
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for all x ∈ R, then by Lemma 2.2, we get R is commutative. Now consider the
second case in which we have d2(h)h

2 = 0 for all h ∈ H(R) ∩ Z(R). This implies
that d2(h) = 0, from here we get d2(k) = 0 for all k ∈ S(R)∩Z(R). Replacing x by
kx in (2.33) and using the fact that d2(k) = 0, we get 4xd2(x

∗)x∗k3 ∈ Z(R) for all
x ∈ R. This implies that xd2(x

∗)x∗ ∈ Z(R) for all x ∈ R. Arguing as above after
(2.13), we conclude that R is commutative.

Now consider the second case in which both d1 and d2 are nonzero. On expan-
sion of (2.32), we have
(2.34)
d1(x

2x∗)− 2d1(x(x
∗)2) + d1((x

∗)3) + x2d2(x
∗)− 2xd2(x

∗)x∗ + d2(x
∗)(x∗)2 ∈ Z(R)

for all x ∈ R. Replacing x by hx, where h ∈ H(R) ∩ Z(R) in (2.34) and solving
with the help of (2.34), we get

∗[x, x
∗]2(3d1(h) + d2(h))h

2 ∈ Z(R) for all x ∈ R.

By the primeness of the ring R, we get either ∗[x, x
∗]2 ∈ Z(R) for all x ∈ R or

(3d1(h)+d2(h))h
2 = 0 for all h ∈ H(R)∩Z(R). If ∗[x, x

∗]2 ∈ Z(R) for all x ∈ R, then
by Lemma 2.2, we getR is commutative. Now consider the case (3d1(h)+d2(h))h

2 =
0. This implies that d2(h) = −3d1(h) and hence d2(k) = −3d1(k) for all k ∈ S(R)∩
Z(R). Now substituting kx for x, where k ∈ S(R) ∩ Z(R) in (2.34) and combining
the obtained result with (2.34), we get 4(d1(x(x

∗)2) + xd2(x
∗)x∗)k3 ∈ Z(R) for

all x ∈ R. Since R is 2-torsion free ring and S(R) ∩ Z(R) 6= (0), then invoking
the primeness of R we obtain d1(x(x

∗)2) + xd2(x
∗)x∗ ∈ Z(R) for all x ∈ Z(R).

Linearization to the last expression gives
(2.35)
d1(xx

∗y∗)+d1(xy
∗x∗)+d1(x(y

∗)2)+d1(y(x
∗)2)+d1(yx

∗y∗)+d1(yy
∗x∗)+xd2(x

∗)y∗

+xd2(y
∗)x∗+xd2(y

∗)y∗+yd2(x
∗)x∗+yd2(x

∗)y∗+yd2(y
∗)x∗ ∈ Z(R) for all x, y ∈ R.

Replacing x by −x in (2.35), we get

2(d1(xx
∗y∗)+d1(xy

∗x∗)+d1(y(x
∗)2)+xd2(x

∗)y∗+xd2(y
∗)x∗+yd2(x

∗)x∗) ∈ Z(R)

for all x, y ∈ R. Since R is 2-torsion free ring, we get
(2.36)
d1(xx

∗y∗) + d1(xy
∗x∗) + d1(y(x

∗)2) + xd2(x
∗)y∗ + xd2(y

∗)x∗ + yd2(x
∗)x∗ ∈ Z(R)

for all x, y ∈ R. Substituting ky for y, where k ∈ S(R) ∩ Z(R) in (2.36) and
combining with (2.36) with use of d2(k) = −3d1(k), we arrive at
(2.37)
2d1(y(x

∗)2)k + 2yd2(x
∗)x∗k − xx∗y∗d1(k) + y(x∗)2d1(k) + 2xy∗x∗d1(k) ∈ Z(R)

for all x, y ∈ R and k ∈ S(R) ∩ Z(R). Substitute ky for y in (2.37) yields

(2.38) 2d1(y(x
∗)2)k2 + 2yd2(x

∗)x∗k2 + xx∗y∗d1(k)k + y(x∗)2d1(k)k
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−2xy∗x∗d1(k)k + 2y(x∗)2d1(k)k ∈ Z(R) for all x, y ∈ R.

Subtracting (2.38) form (2.37), we get (−2xx∗y∗+4xy∗x∗−2y(x∗)2)d1(k)k ∈ Z(R)
for all x, y ∈ R. Since R is 2-torsion free prime ring and S(R) ∩ Z(R) 6= (0), the
last expression forces that either xx∗y∗ − 2xy∗x∗ + y(x∗)2 ∈ Z(R) for all x, y ∈ R

or d1(k)k = 0. Suppose

(2.39) xx∗y∗ − 2xy∗x∗ + y(x∗)2 ∈ Z(R) for all x, y ∈ R.

Substituting ky for y, where k ∈ S(R)∩Z(R) in (2.39) and combining with (2.39),
we get 2y(x∗)2k ∈ Z(R) for all x, y ∈ R. Taking x = k, we obtain 2yk3 ∈ Z(R) for
all y ∈ R. Since R is 2-torsion free prime ring and S(R)∩Z(R) 6= (0), we conclude
that R is commutative. Now consider the case in which we have d1(k)k = 0 for all
k ∈ S(R)∩Z(R). This implies that d1(k) = 0 for all k ∈ S(R)∩Z(R). This further
implies that d2(k) = 0. Substitute k for x in (2.36), to get

(2.40) −2d1(y
∗)k2 + d1(y)k

2 − d2(y
∗)k2 ∈ Z(R) for all y ∈ R.

Replacing y by ky, where k ∈ S(R) ∩ Z(R) in (2.40) and combining the obtained
relation with (2.40), finally we get 2d1(y)k

3 ∈ Z(R) for all y ∈ R. Since R is
2-torsion free ring and S(R) ∩ Z(R) 6= (0), we obtain d1(y) ∈ Z(R) for all y ∈ R.

Hence, by Posner’s [4] first theorem, R is commutative. 2

As an immediate consequence of the above theorem, we get the following corol-
lary:

Corollary 2.8. Let R be a 2-torsion free prime ring with involution ′∗′ of the second
kind. If R admits a nonzero derivation d such that d(∗[x, x

∗]2)+∗ [x, d(x
∗)]2 ∈ Z(R)

for all x ∈ R, then R is commutative.

The following example shows that the second kind involution assumption is
essential in Theorem 2.3 and Theorem 2.4.

Example 2.9. Let R =

{(

β1 β2

β3 β4

)

∣

∣

∣
β1, β2, β3, β4 ∈ Z

}

. Of course, R with

matrix addition and matrix multiplication is a noncommutative prime ring. Define

mappings ∗, d1, d2 : R −→ R such that

(

β1 β2

β3 β4

)

∗

=

(

β4 −β2

−β3 β1

)

,

d1

(

β1 β2

β3 β4

)

=

(

0 −β2

β3 0

)

and d2

(

β1 β2

β3 β4

)

=

(

0 β2

−β3 0

)

.

Obviously, Z(R) =

{(

β1 0
0 β1

)

∣

∣

∣
β1 ∈ Z

}

. Then x∗ = x for all x ∈ Z(R), and

hence Z(R) ⊆ H(R), which shows that the involution ∗ is of the first kind. More-
over, d1 and d2 are nonzero derivations of R such that ∗[x, d1(x)]2 ∈ Z(R) and

∗[x, d1(x)]2 −∗ [x, d2(x)]2 ∈ Z(R) for all x ∈ R. However, R is not commutative.
Hence, the hypothesis of second kind involution is crucial in Theorems 2.3 & 2.4
Our next example shows that Theorems 2.3 and 2.4 are not true for semiprime
rings.
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Example 2.10. Let S = R×C, where R is same as in Example 2.9 with involution
′∗′ and derivations d1 and d2 same as in above example, C is the ring of complex
numbers with conjugate involution τ . Hence, S is a 2-torsion free noncommutative
semiprime ring. Now define an involution α on S, as (x, y)α = (x∗, yτ ). Clearly,
α is an involution of the second kind. Further, we define the mappings D1 and
D2 from S to S such that D1(x, y) = (d1(x), 0) and D2(x, y) = (d2(x), 0) for all
(x, y) ∈ S. It can be easily checked that D1, D2 are derivations on S and satisfying
α[X,D1(X)]2 ∈ Z(S) and α[X,D1(X)]2 − α[X,D2(X)]2 ∈ Z(S) for all X ∈ S, but
S is not commutative. Hence, in Theorems 2.3 & 2.4, the hypothesis of primeness
is essential.

We conclude the paper with the following Conjectures.

Conjecture 2.11. Let n > 2 be an integer, R be a prime ring with involution
′∗′ of the second kind and with suitable torsion restrictions on R. Next, let d be a
nonzero derivation on R such that ∗[x, d(x)]n ∈ Z(R) for all x ∈ R. Then what we
can say about the structure of R or the form of d?

Conjecture 2.12. Let n > 2 be an integer, R be a prime ring with involution
′∗′ of the second kind and with suitable torsion restrictions on R. Next, let d be a
nonzero derivation on R such that d(∗[x, x

∗]n) ∈ Z(R) for all x ∈ R. Then what we
can say about the structure of R or the form of d?

Conjecture 2.13. Let n > 2 be an integer, R be a prime ring with involution
′∗′ of the second kind and with suitable torsion restrictions on R. Next, let d be a
nonzero derivation on R such that d(∗[x, x

∗]n) +∗ [x, d(x
∗)]n ∈ Z(R) for all x ∈ R.

Then what we can say about the structure of R or the form of d?
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