DERIVATIONS ON NONCOMMUTATIVE SEMI-PRIME PINGS

  • Published : 1999.03.01

Abstract

The purpose of this paper is to prove the following result: Let R be a 2-torsion free noncommutative semi-prime ring and D:RlongrightarrowR a derivation. Suppose that $[[D(\chi),\chi],\chi]\in$ Z(R) holds for all $\chi \in R$. Then D is commuting on R.

Keywords

References

  1. Rad. Mat. v.5 Orthogonal derivation and an extension of a theorem of Posner M.Bre$\u{s}$ar;J.Vukman
  2. Proc. Amer. Math. v.114 On a generalization of the notation of centralizing mapping Bre$\u{s}$ar
  3. Trans .Amer. Math. Soc. v.335 Commuting traces of biadditive mappings.commutativity-preserving mapping and Lie mapping M.Bre$\u{s}$ar
  4. J. Algebra. Centralizing mapping and derivations in prime rings M.Bre$\u{s}$ar
  5. Proc. Amer. Math. Soc. v.118 An Engel condition with derivation C.Lanski
  6. Proc. Amer. Math. Soc. v.8 Derivations in prime rings E.C.Posner
  7. Proc. Amer. Math. Soc. v.109 Commuting and centralizing mappings in prime rings J.Vukman
  8. Bull. Austral. Math. Soc. v.53 Derivations on semi-prime rings J.Vukman