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Abstract. Let M be a semi-invariant submanifold with almost contact metric structure

(φ, ξ, η, g) of codimension 3 in a complex space form Mn+1(c) for c 6= 0. We denote by

S and Rξ be the Ricci tensor of M and the structure Jacobi operator in the direction of

the structure vector ξ, respectively. Suppose that the third fundamental form t satisfies

dt(X,Y ) = 2θg(φX, Y ) for a certain scalar θ 6= 2c and any vector fields X and Y on M .

In this paper, we prove that if it satisfies Rξφ = φRξ and at the same time Sξ = g(Sξ, ξ)ξ,

then M is a real hypersurface in Mn(c) (⊂ Mn+1(c)) provided that r̄ − 2(n − 1)c ≤ 0,

where r̄ denotes the scalar curvature of M .

1. Introduction

A submanifold M is called a CR submanifold of a Kaehlerian manifold M̃ with
complex structure J if there exists a differentiable distribution △ : p → △p ⊂ Mp on
M such that △ is J-invariant and the complementary orthogonal distribution △⊥ is
totally real, where Mp denotes the tangent space at each point p in M ([1], [25]). In
particular, M is said to be a semi-invariant submanifold provided that dim△⊥ =
1. The unit normal in J△⊥ is called the distinguished normal to the semi-invariant
submanifold ([4], [23]). In this case, M admits an induced almost contact metric
structure (φ, ξ, η, g). A typical example of a semi-invariant submanifold is real
hypersurfaces. New examples of nontrivial semi-invariant submanifolds in a complex
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projective space PnC are constructed in [13] and [20]. Therefore we may expect to
generalize some results which are valid in a real hypersurface to a semi-invariant
submanifold.

An n-dimensional complex space form Mn(c) is a Kaehlerian manifold of con-
stant holomorphic sectional curvature 4c. As is well known, complete and simply
connected complex space forms are isometric to a complex projective space PnC,
or a complex hyperbolic space HnC according as c > 0 or c < 0.

For the real hypersurface of a complex space form Mn(c), many results are
known. One of them, Takagi([21], [22]) classified all the homogeneous real hyper-
surfaces of PnC as six model spaces which are said to be A1, A2, B, C,D and E,
and Cecil-Ryan ([5]) and Kimura ([14]) proved that they are realized as the tubes
of constant radius over Kaehlerian submanifolds when the structure vector field ξ
is principal.

On the other hand, real hypersurfaces in HnC have been investigated by Berndt
([2]), Montiel and Romero ([15]) and so on. Berndt ([2]) classified all real hypersur-
faces with constant principal curvatures in HnC and showed that they are realized
as the tubes of constant radius over certain submanifolds. Also such kinds of tubes
are said to be real hypersurfaces of type A0, A1, A2 or type B.

Let M be a real hypersurface of type A1 or type A2 in a complex projective
space PnC or that of type A0, A1 or A2 in a complex hyperbolic space HnC. Now,
hereafter unless otherwise stated, such hypersurfaces are said to be of type (A) for
our convenience sake.

Characterization problems for a real hypersurface of type (A) in a complex space
form were studied by many authors ([6], [7], [8], [15], [16], [18], etc.).

Two of them, we introduce the following characterization theorems due to Oku-
mura [18] for c > 0 and Montiel and Romero [15] for c < 0 respectively.

Theorem O. Let M be a real hypersurface of PnC, n ≥ 2. If it satisfies

(1.1) g((Aφ − φA)X,Y ) = 0

for any vector fields X and Y , then M is locally congruent to a tube of radius r

over one of the following Kaehlerian submanifolds :

(A1) a hyperplane Pn−1C, where 0 < r < π/2,

(A2) a totally geodesic PkC (1 ≤ k ≤ n− 2), where 0 < r < π/2.

Theorem MR. Let M be a real hypersurface of HnC, n ≥ 2. If it satisfies (1.1),
then M is locally congruent to one of the following hypersurface :

(A0) a horosphere in HnC, i.e., a Montiel tube,

(A1) a geodesic hypersphere, or a tube over a hyperplane Hn−1C,

(A2) a tube over a totally geodesic HkC (c ≤ k ≤ n− 2).
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Denoting by R the curvature tensor of the submanifold, we define the Jacobi
operator Rξ = R(·, ξ)ξ with respect to the structure vector ξ. Then Rξ is a self
adjoint endomorphism on the tangent space of a CR submanifold.

Using several conditions on the structure Jacobi operator Rξ, characterization
problems for real hypersurfaces of type (A) have recently studied. In the previous
paper ([7]), Cho and one of the present authors gave another characterization of real
hypersurface of type (A) in a complex projective space PnC. Namely they prove
the following :

Theorem CK.([7]) Let M be a connected real hypersurface of PnC if it satisfies

(1) RξAφ = φARξ or (2) Rξφ = φRξ, RξA = ARξ, then M is of type (A), where A
denotes the shape operator of M .

On the other hand, semi-invariant submanifolds of codimension 3 in a complex
projective space Pn+1C have been studied in [10], [12], [13] and so on by using
properties of induced almost contact metric structure and those of the third funda-
mental form of the submanifold. In the preceding work, Ki, Song and Takagi ([13])
assert the following:

Theorem KST.([13]) Let M be a real (2n−1)-dimensional semi-invariant subman-

ifold of codimension 3 in a complex projective space Pn+1C with constant holomor-

phic sectional curvature 4c. If the structure vector ξ is an eigenvector for the shape

operator in the direction of the distinguished normal and the third fundamental form

t satisfies dt = 2θω for a certain scalar θ(< 2c), where ω(X,Y ) = g(φX, Y ) for any
vectors X and Y on M , then M is a Hopf hypersurface in a complex projective

space PnC.

In this paper, we consider a semi-invariant submanifold M of codimension 3 in
a complex space form Mn+1(c), c 6= 0 which satisfies Rξφ = φRξ and at the same
time Sξ = g(Sξ, ξ)ξ such that the third fundamental form t satisfies dt = 2θω for a
certain scalar θ(6= 2c) and the scalar curvature r̄ of M satisfies r̄ − 2c(n− 1) ≤ 0,
where S denotes the Ricci tensor of M . In the present paper, we prove that M is
a real hypersurface of type (A) in Mn(c) mentioned Theorem O and Theorem MR.
Our main theorem stated in section 6.

All manifolds in the present paper are assumed to be connected and of class
C∞ and the semi-invariant submanifolds are supposed to be orientable.

2. Preliminaries

Let M̃ be a real 2(n+1)-dimensional Kaehlerian manifold with parallel almost
complex structure J and a Riemannian metric tensor G. Let M be a real (2n− 1)-
dimensional Riemannian manifold isometrically immersed in M̃ . We denote by g
the Riemannian metric tensor on M from that of M̃ .

We denote by ∇̃ the operator of covariant differentiation with respect to the
metric tensor G on M̃ and by ∇ the one on M . Then the Gauss and Weingarten
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formulas are given respectively by

∇̃XY = ∇XY +

3∑

i=1

g(A(i)X,Y )C(i),

∇̃XC
(i) = −A(i)X +

3∑

j=1

lj
(i)(X)C(j)

(2.1)

for any vector fields X and Y tangent to M and any vector field C
(i) normal to

M , where A(i) are called the second fundamental forms with respect to the normal
vector C(i).

As is well-known, a submanifold of a Kaehlerian manifold is said to be a CR
submanifold ([1], [25]) if it is endowed with a pair of mutually orthogonal and
complementary differentiable distribution (T, T⊥) such that for any point p ∈ M we
have JTp = Tp, JT

⊥
p ⊂ T⊥

p M , where T⊥
p M denotes the normal space of M at p. In

particular,M is said to be semi-invariant submanifold provided that dimT⊥ = 1([4],
[23]). In this case the unit vector field in JT⊥ is called a distinguished normal to
the semi-invariant submanifold and denote by C([4], [23]).

More precisely, we choose an orthonormal basis e1, · · · , e2n−2, ξ of Mp in such a
way that e1, e2, · · · , e2n−2 ∈ T , where Mp denotes the tangent space to M at each
point p in M . Then we see that

G(Jξ, ei) = −G(ξ, Jei) = 0

for i = 1, · · · , 2n− 2.
From now on we consider M is a real (2n− 1)-dimensional semi-invariant sub-

manifold of a Kaehlerian manifold M̃ of real dimension 2(n+1). Then we can write
([4], [24])

(2.2) JX = φX + η(X)C, JC = −ξ, JD = −E, JE = D,

where we have put g(φX, Y ) = G(JX, Y ), η(X) = G(JX,C) for any vector fields X
and Y tangent to M , and put C(1) = C, C(2) = D and C

(3) = E.
By the Hermitian property of J , we see, using (2.2), that the aggregate (φ, ξ, η, g)

is an almost contact metric structure on M , that is, we have

φ2X = −X+η(X)ξ, φξ = 0, η(ξ) = 1, η(X) = g(ξ,X),

g(φX, φY ) = g(X,Y )− η(X)η(Y )

for any vectors X and Y on M .
We can also write the second equation of (2.1) as

∇̃XC = −AX + l(X)D+m(X)E,

∇̃XD = −KX − l(X)C + t(X)E,

∇̃XE = −LX −m(X)C − t(X)D

(2.3)
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because C, D and E are mutually orthogonal, where we have put

A(1) = A, A(2) = K, A(3) = L,

l = l2
(1) = −l1

(2), m = l3
(1) = −l1

(3), t = l3
(2) = −l2

(3),

(2.4)

In the sequel, we denote the normal components of ∇̃XC by ∇⊥C. The distin-
guished normal C is said to be parallel in the normal bundle if we have ∇⊥C = 0,
that is, l and m vanish identically.

From the Kaehler condition ∇̃J = 0 and take account of the Gauss and Wein-
garten formulas,we obtain from (2.2)

(2.5) ∇Xξ = φAX,

(2.6) (∇Xφ)Y = η(Y )AX − g(AX, Y )ξ,

(2.7) KX = φLX −m(X)ξ, KφX = LX − η(X)Lξ,

(2.8) LX = −φKX + l(X)ξ, LφX = −KX + η(X)Kξ

for any vectors X and Y on M . The last two relationships give

(2.9) l(X) = g(Lξ,X), m(X) = −g(Kξ,X),

(2.10) m(ξ) = −k, l(ξ) = TrA(3),

where, we have put k = TrA(2).
We notice here that there is no loss of generality such that we may assume

TrA
(3) = 0. In fact, a normal vector v ofM we denote by Av the second fundamental

tensor of M in the direction of v. Then we have A−v = −Av. Hence there is a unit
normal vector D′ of M in the plane spanned by two vectors D and E such that
TrAD′ = 0, which proves our assertion. Therefore we have by (2.10)

(2.11) l(ξ) = 0.

Applying (2.8) by φ and using (2.7), we find

−g(KX,Y )−m(X)η(Y ) = g(φKX, φY )− η(X)l(φY ).

If we take the skew-symmetric part of this with respect to X and Y , then we obtain

−m(X)η(Y ) +m(Y )η(X) = η(X)l(φY )− η(Y )l(φX),

which together with (2.10) gives

(2.12) l(φX) = m(X) + kη(X).
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Similarly we have

(2.13) m(φX) = −l(X)

because of (2.10).
Transforming (2.7) by L and using (2.8) and (2.9), we obtain

(2.14) g(KLX, Y ) + g(LKX, Y ) = −l(X)m(Y )− l(Y )m(X).

In the rest of this paper we shall suppose that M̃ is a Kaehlerian manifold of
constant holomorphic sectional curvature 4c, which is called a complex space form

and denote by Mn+1(c). Then equations of the Gauss and Codazzi are given by

R(X,Y )Z = c{g(Y, Z)X − g(X,Z)Y + g(φY, Z)φX − g(φX,Z)φY

− 2g(φX, Y )φZ}+ g(AY,Z)AX − g(AX,Z)AY

+ g(KY,Z)KX − g(KX,Z)KY + g(LY,Z)LX − g(LX,Z)LY,

(2.15)

(∇XA)Y − (∇Y A)X − l(X)KY + l(Y )KX

−m(X)LY +m(Y )LX = c{η(X)φY − η(Y )φX − 2g(φX, Y )ξ},

(2.16)

(2.17) (∇XK)Y − (∇Y K)X + l(X)AY − l(Y )AX − t(X)LY + t(Y )LX = 0,

(∇XL)Y − (∇Y L)X +m(X)AY −m(Y )AX

+ t(X)KY − t(Y )KX = 0,

(2.18)

where R is the Riemann-Christoffel curvature tensor on M , and those of the Ricci
by

(∇X l)(Y )− (∇Y l)(X) + g(KAX,Y )− g(AKX,Y )

+m(X)t(Y )−m(Y )t(X) = 0,

(2.19)

(∇Xm)(Y )− (∇Y m)(X) + g(LAX, Y )− g(ALX, Y )

+ t(X)l(Y )− t(Y )l(X) = 0,

(2.20)

(∇Xt)(Y )− (∇Y t)(X) + g(LKX, Y )− g(KLX, Y )

+ l(X)m(Y )− l(Y )m(X) = 2cg(φX, Y ).

(2.21)



Submanifolds of Codimension 3 in a Complex Space Form 139

In what follows, to write our formulas in a convention form, we denote by
α = η(Aξ), β = η(A2ξ), T rA = h, T rA(2) = k, T r(tAA) = h(2) and for a function f
we denote by ∇f the gradient vector field of f .

Now, we put ∇ξξ = U in the sequel. Then U is orthogonal to ξ because of (2.5).
From now on we put

(2.22) Aξ = αξ + µW,

where W is a unit vector field orthogonal to ξ. Then we have

(2.23) U = µφW

because of (2.5). So, W is orthogonal to U . Further, we have

(2.24) µ2 = β − α2.

From (2.22) and (2.23) we have

(2.25) φU = −Aξ + αξ,

which together with (2.5) and (2.22) yields

(2.26) g(∇Xξ, U) = µg(AW,X), µg(∇XW, ξ) = g(AU,X)

because W is orthogonal to ξ.
Differentiating (2.25) covariantly along M and using (2.5) and (2.6), we find

(2.27) (∇XA)ξ = −φ∇XU + g(AU +∇α,X)ξ −AφAX + αφAX,

which enables us to obtain

(2.28) (∇ξA)ξ = 2AU +∇α− 2kLξ.

Because of (2.5), (2.26) and (2.27), we verify that

(2.29) ∇ξU = 3φAU + αAξ − βξ + φ∇α− 2k(Kξ − kξ).

In the next place, the Jacobi operators Rξ is given by
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RξX = R(X, ξ)ξ = c(X − η(X)ξ) + αAX − η(AX)Aξ + kKX

−m(X)Kξ − l(X)Lξ,

(2.30)

where we have used (2.9), (2.10) and (2.15).
Suppose that Rξφ = φRξ holds on M . Then from (2.30) we have

α(φAX −AφX) = g(Aξ,X)U + g(U,X)Aξ + 2kLX

− 2k{l(X)ξ + η(X)Lξ},

(2.31)

where we have used (2.5), (2.8) and (2.12).

3. The Third Fundamental Forms of Semi-Invariant Submanifolds

In this section we shall suppose that M is a semi-invariant submanifold of codi-
mension 3 in a complex space form Mn+1(c), c 6= 0 and that the third fundamental
form t satisfies

(3.1) dt = 2θω, ω(X,Y ) = g(φX, Y )

for a certain scalar θ and any vector fields X and Y on M , where d denotes the
exterior differential operator. Then (2.21) reformed as

g(LKX, Y )− g(KLX, Y ) + l(X)m(Y )− l(Y )m(X) = −2(θ − c)g(φX, Y ),

or, using (2.14)

(3.2) g(LKX, Y ) + l(X)m(Y ) = −(θ − c)g(φX, Y ),

which together with (2.9)∼(2.11) implies that

(3.3) KLξ = kLξ, LKξ = 0.

Differentiating (3.1) covariantly along M and using (2.6) and the first Bianchi
identity, we find

(Xθ)ω(Y, Z) + (Y θ)ω(Z,X) + (Zθ)ω(X,Y ) = 0,

which implies (n− 2)Xθ = 0. Thus θ(≥ c) is constant if n > 2.
For the case where θ = c in (3.1) we have dt = 2cω. In this case, the normal

connection of M is said to be L-flat([18]).

Lemma 3.1. Let M be a semi-invariant submanifold with L-flat normal connection

in Mn+1(c), c 6= 0. If Aξ = αξ, then we have ∇⊥C = 0 and A(2) = A(3) = 0.
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Proof. From (3.2) we have

Tr(
tA(2)A(2))− ‖Kξ‖2 + ‖Lξ‖2 = 2(n− 1)(θ − c)

because of (2.7), (2.9) and (2.12), which implies

‖A(2) − kη ⊗ ξ‖2 + ‖Lξ‖2 = 2(n− 1)(θ − c),

where ‖F‖2 = g(F, F ) for any vector field F on M . Thus, by our hypothesis θ = c,
we have A(2) = kη ⊗ ξ.

In the same way, we see from (2.8), (2.10), (2.13) and (3.2) that A(3) = 0. And
hence m(X) = −kη(X) and l = 0 because of (2.9). Therefore, it suffices to show
that k = 0. Using these facts, (2.19) reformed as

k{η(X)Aξ − g(Aξ,X)ξ} = k(η(X)t− t(X)ξ),

which together with Aξ = αξ gives

(3.4) k(t− t(ξ)ξ) = 0.

We also have from (2.18)

k{η(X)(AY + t(Y )ξ)− η(Y )(AX + t(X)ξ)} = 0,

which implies k(h − α) = 0. Form this and (3.4) we verify that k = 0. This
completes the proof. �

Applying (3.2) by φ and taking account of (2.7) and (2.13), we find

(3.5) K2X + η(X)K2ξ + l(X)Lξ = (θ − c)(X − η(X)ξ),

which implies η(X)K2ξ − g(K2ξ,X)ξ = 0. Thus, it follows that

(3.6) K2ξ = (‖Kξ‖2)ξ

by virtue of (2.9). Thus, (3.5) becomes

K2X + l(X)Lξ + ‖Kξ‖2η(X)ξ = (θ − c)(X − η(X)ξ).

Putting X = Lξ in (2.8) and taking account of (2.12) and (3.3), we obtain

(3.7) L2ξ = kKξ + (‖Kξ‖2 + k2)ξ.

If we put X = Lξ in (3.2) and make use of (2.13) and (3.2), we find
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(θ − c− ‖Kξ‖2)Lξ = 0.

Similarly, we verify, using (3.2) and (3.7), that

(θ − c− ‖Lξ‖2 − k2)(‖Kξ‖2 − k2) = 0.

Let ‖Lξ‖ 6= 0 at every point of M and suppose that this subset does not void.
Then we have ‖Kξ‖2 = θ − c and ‖Lξ‖2 + k2 = θ − c on the subset. Using these
facts, we can verify that ( for detail, see (2.22) and (2.24) of [13])

(3.8) ∇k = 2ALξ,

(3.9) ∇XLξ = t(X)Kξ −AKX − kAX

on the set. Differentiating (3.8) covariantly and taking the skew-symmetric part
obtained, we find

(θ − 2c)(η(X)Kξ −m(X)ξ) = 0,

where we have used (2.12), (2.16), (3.3) and (3.9), which shows that (θ−2c)(m(X)+
kη(X)) = 0 and hence θ = 2c on this subset. Thus, from the first equation of (2.3)
we have

Lemma 3.2. Let M be a semi-invariant submanifold of codimension 3 in Mn+1(c),
c 6= 0 satisfying (3.1). If θ − 2c 6= 0, then ∇⊥C = −kξE on M .

In the following we assume that M satisfies (3.1) with θ−2c 6= 0. Then we have

(3.10) Lξ = 0, Kξ = kξ

because of (2.9). It is, using (3.10), clear that (2.7), (2.8) and (3.2) are reduced
respectively to

(3.11) φLX = KX − kη(X)ξ,

(3.12) L = Kφ,

(3.13) g(LKX, Y ) + (θ − c)g(φX, Y ) = 0.

From the last two equations, we obtain

(3.14) L2X = (θ − c)(X − η(X)ξ).
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Further, if we take account of (3.10), then the other structure equations
(2.16)∼(2.21) reformed as

(∇XA)Y − (∇Y A)X

= k{η(Y )LX − η(X)LY }+ c{η(X)φY − η(Y )φX − 2g(φX, Y )ξ},

(3.15)

(3.16) (∇XK)Y − (∇Y K)X = t(X)LY − t(Y )LX,

(3.17) (∇XL)Y − (∇Y L)X = k{η(X)AY − η(Y )AX} − t(X)KY + t(Y )KX,

(3.18) KAX −AKX = k{η(X)t− t(X)ξ},

(3.19) LAX −ALX = (Xk)ξ − η(X)∇k + k(φAX +AφX),

where we have used (2.5).

Putting X = ξ in (3.18) and using (3.10), we find

(3.20) KAξ = kAξ + k(t− t(ξ)ξ).

Replacing X by ξ in (3.19) and using (2.5), (3.10) and (3.12), we get

(3.21) KU = (ξk)ξ −∇k + kU.

If we apply (3.20) by φ and make use of (2.22) (3.11) and (3.12), then we find

(3.22) KU = k(tφ− U),

which together with (3.21) yields

(3.23) ∇k = (ξk)ξ + k(−tφ+ 2U).

If we transform (3.19) by φ and take account of (2.22), (3.11) and the last
equation, then we obtain

φALX −KAX = −k{t− t(ξ)ξ}η(X) + 2µη(X)W + 2g(Aξ,X)ξ −AX − φAφX},

which connected to (3.18) gives

(3.24) φAL = −LAφ.

Since θ is constant if n > 2, differentiating (3.14) covariantly, we find

(∇XL2)Y = (c− θ){η(Y )φAX + g(φAX, Y )ξ},
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or, using (3.13) and (3.17), it is verified that (see, [13])

2(∇XL)LY =(θ − c){2t(X)φY − η(Y )(φA +Aφ)X + g((Aφ− φA)X,Y )ξ

− η(X)(φA −Aφ)Y } − k{η(Y )(AL + LA)X

− g((AL+ LA)X,Y )ξ − η(X)(LA−AL)Y },

which together with (3.10) and (3.22) yields

(θ − c)(Aφ − φA)X + (k2 + θ − c)(u(X)ξ + η(X)U)

+ k{(AL+ LA)X + k{−t(φX)ξ + η(X)φ ◦ t} = 0,

(3.25)

where u(X) = g(U,X) for any vector X .

In the following we consider the case where (2.22) with µ = 0, that is Aξ = αξ.
Differentiating this covariantly and using (2.5), we find

(∇XA)ξ = −AφAX + αφAX + (Xα)ξ,

which together with (3.10) and (3.15) gives

(3.26) −2AφAX + α(φA +Aφ)X + 2cφX = η(X)∇α − (Xα)ξ.

If we put X = ξ in this and using (2.22) with µ = 0, then we find

(3.27) ∇α = (ξα)ξ.

Differentiating the second equation of (3.10) covariantly along M , and using
(2.5), we find ∇Xm = −(Xk)ξ + kφAX , from which taking the skew-symmetric
part and making use of (2.20) with l = 0,

LAX −ALX − k(φAX +AφX) = (Xk)ξ − η(X)∇k.

Since Aξ = αξ was assumed, we then have

(3.28) ∇k = (ξk)ξ

because of (3.10). From the last two equations, it follows that

(3.29) LA−AL = k(φA+Aφ).

If we put X = ξ in (3.18) and remember (2.22) with µ = 0 and (3.10), then we
get

(3.30) k(t(X)− t(ξ)η(X)) = 0.

Since we have Aξ = αξ, differentiating (3.28) covariantly, and taking the skew-
symmetric part obtained, we get

(3.31) (ξk)(Aφ + φA) = 0.
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From this and (3.27) we can write (3.26) as α(A2φ+ cφ) = 0. By the properties of
the almost contact metric structure, it follows that

ξk{h(2) − α2 + 2c(n− 1)} = 0,

which implies ξk = 0 if c > 0.

4. Commuting Structure Jacobi Operators

We will continue our arguments under the same hypotheses dt = 2θω for a
scalar θ(6= 2c) as those stated in section 3. Further suppose, throughout this paper,
that Rξφ = φRξ, which means that the eigenspace of the structure Jacobi operator
Rξ is invariant by the structure operator φ. Then (2.31) reformed as

(4.1) α(φAX −AφX) = g(Aξ,X)U + g(U,X)Aξ + 2kLX

by virtue of (3.10).
Transforming this by A, and taking the trace obtained, we have g(A2ξ, U) = 0

because of (3.25), which together with (2.22) yields

(4.2) µg(AW,U) = 0.

Applying (4.1) by L and using (2.25), (3.11) and (3.19), we find

α{AKX − kη(X)Aξ − φALX}+ g(LU,X)Aξ + g(KU,X)U

= −2kL2X,

(4.3)

which together with (3.18) and (3.22) yields

kα{t(X)ξ − η(X)t+ g(Aξ,X)ξ − η(X)Aξ}

+ g(LU,X)Aξ − g(Aξ,X)LU − u(X)KU + g(KU,X)U = 0,

where u(X) = g(U,X) for any vector X . If we take the inner product with ξ to
this and use (3.10), then we get

(4.4) kα{t(X)− t(ξ)η(X) + g(Aξ,X)− αη(X)}+ αg(LU,X) = 0.

Combining the last two equations and taking account of (2.24), we obtain

(4.5) µ(w(X)LU − g(LU,X)W ) + u(X)KU − g(KU,X)U = 0,

where w(X) = g(W,X) for any vector X .
In the previous paper [13] we prove the following proposition.

Proposition 4.1. Let M be a real (2n − 1)-dimensional(n > 2) semi-invariant

submanifold of codimension 3 in a complex space form Mn+1(c), c 6= 0. If it satisfies
dt = 2θω for a scalar θ 6= 2c and µ = g(Aξ,W ) = 0, then we have k = 0.



146 U-H. KI and H. Song

Sketch of Proof. This fact was proved for c > 0 (see, Proposition 3.5 of [13]). But,
regardless of the sign of c this one is established. However, only ξk = 0 and ξα = 0
should be newly certified. We are now going to prove, using (4.1), that ξk = 0.

Now, let Ω1 be a set of points such that ξk 6= 0 on M and suppose that Ω1 be
nonvoid. Then we have

Aφ + φA = 0, LA = AL

on Ω1 because of (3.29) and (3.31). We discuss our arguments on Ω1.
From (4.1) we have αφA+ kL = 0 because of µ = 0, which together with (3.11)

gives αAY + kKY = (α2 + k2)η(Y )ξ. Differentiating this covariantly along Ω1 and
using (3.27) and (3.28), we find

(Xα)AY + α(∇XA)Y + (ξk)η(X)KY + k(∇XK)Y

= 2(α(ξα) + k(ξk))η(X)η(Y ) + (α2 + k2){g(φAX, Y )ξ + η(Y )φAX},

from which, taking the skew-symmetric part and making use of (3.16), we obtain

(Xα)AY − (Y α)AX + α((∇XA)Y − (∇Y A)X) + k(t(X)LY − t(Y )LX)

= (α2 + k2)(η(Y )φAX − η(X)φAY ).

If we take the inner product ξ to this and remember (3.10), (3.15) and the fact
that µ = 0, then we have cα = 0, which together with (4.1) yields kL = 0, a
contradiction because of (3.14). In the same way we see from (3.27) that ξα = 0.
This completes the proof. �

We set Ω = {p ∈ M : k(p) 6= 0}, and suppose that Ω is nonempty. In the
rest of this paper, we discuss our arguments on the open subset Ω of M . So, by
Proposition 4.1 we see that µ 6= 0 on Ω.

We notice here that the following fact :
Remark 4.2. α 6= 0 on Ω.

In fact, if not, then we have α = 0 on this subset. We discuss our arguments
on such a place. So (4.1) reformed as

(4.6) µ(w(X)U + u(X)W ) + 2kLX = 0

because of (2.22) with α = 0. Putting X = U or W in this we have respectively

(4.7) LU = −
µβ

2k
W, LW = −

µ

2k
U

by virtue of (2.24) with α = 0. Using this and (3.14), we can write (4.3) as

−
β2

2k
w(X)W + g(KU,X)U = −2k(θ − c)(X − η(X)ξ).

Taking the inner product with W to this, we obtain β2 = 4k2(θ − c).
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On the other hand, combining (4.6) and (4.7) to (3.14) we also have β2 =
4(n− 1)k2(θ− c), which implies (n− 2)(θ− c)k = 0, a contradiction because of our
assumption and Lemma 3.1. Thus, α = 0 is not impossible on Ω.

Now, putting X = U in (4.4) and remembering Remark 4.2, we find kt(U) +
g(LU,U) = 0.

By the way, replacing X by U in (4.1) and using (2.22) and (2.25), we find

α(φAU + µAW ) = µ2Aξ + 2kLU.

If we take the inner product with U and make use of (4.2) and Proposition 4.1, then
we obtain g(LU,U) = 0 and hence t(U) = 0.

By putting X = U in (4.5), we then have

(4.8) KU = τU,

where τ is given by τµ2 = g(KU,U) by virtue of Proposition 4.1. Applying this by
φ and using (3.12), we find

(4.9) LU = τµW.

It is, using (4.8) and (4.9), seen that

(4.10) τ2 = θ − c.

because of (3.13).

Remark 4.3. Ω = ∅ if θ = c.

Since we have θ = c, then (3.14) gives L = 0 and thus KX = kη(X)ξ by virtue
of (3.11). Hence, (3.17) reformed as

k{η(X)AY − η(Y )AX + η(X)t(Y )ξ − t(X)η(Y )ξ} = 0,

which shows k(t(X) + g(Aξ,X) − ση(X)) = 0, where we have put σ = α + t(ξ).
Thus, the last two equations imply

AX = η(X)Aξ + g(Aξ,X)ξ − αη(X)ξ.

Since U is orthogonal to ξ and W , it is clear that AU = 0 and AW = µξ.
If we put X = µW in (4.1) and remember (2.23) and the fact that L = 0, then

we obtain µ2U = 0 and hence Aξ = αξ. Owing to Lemma 3.1, we conclude that
k = 0 and thus Ω = ∅.

By Remark 4.3, we may only consider the case where τ 6= 0 on Ω. Because of
(3.22) and (4.8) we have

(4.11) t(φX) = (1 +
τ

k
)g(U,X).
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Therefore, by properties of the almost contact metric structure, it is clear that

(4.12) t = t(ξ)ξ − µ(1 +
τ

k
)W.

Using (2.22), we can write (3.20) as

µKW = kµW + k(t− t(ξ)ξ),

which together with (4.12) implies that

(4.13) KW = −τW

because of Proposition 4.1.
If we take account of (3.25) and (4.11), then we find

(4.14) τ2(AφX − φAX) + τ(τ − k)(u(X)ξ + η(X)U) + k(ALX + LAX) = 0.

From (2.15) the Ricci tensor S of type (1,1) of M is given by

SX = c{(2n+ 1)X − 3η(X)ξ}+ hAX −A2X + kKX −K2X − L2X

by virtue of (3.10).
By the way, we see, using (3.12)∼(3.14), that

(4.15) K2X = (θ − c)(X − η(X)ξ) + k2η(X)ξ.

Substituting this and (3.14) into the last equation and using (4.10), we obtain

(4.16) SX = {c(2n+1)−2(θ−c)}X+(2(θ−c)−k2−3c)η(X)ξ+hAX−A2X+kKX,

which connected to (3.10) yields

(4.17) Sξ = 2c(n− 1)ξ + hAξ −A2ξ.

Differentiating (4.8) covariantly along Ω, we find

(∇XK)U +K∇XU = τ∇XU,

which together with (3.16) and (4.9) yields

µτ(t(X)w(Y )− t(Y )w(X)) + g(K∇XU, Y )− g(K∇Y U,X)

= τ{g(∇XU, Y )− g(∇Y U,X)}.

(4.18)

By the way, because of (2.22) and (2.24), we can write (2.29) as

(4.19) ∇ξU = 3φAU + αµW − µ2ξ + φ∇α.
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Replacing X by ξ in (4.18) and taking account of the last two relationships, we
find

µ2(τ − k)ξ + µτ(t(ξ) − 2α)W + µ(k − τ)AW

+ 3(LAU − τφAU) = τφ∇α − L∇α,

(4.20)

where we have used the first equation of (2.26).
In a direct consequence of (3.12) and (4.8), we obtain

(4.21) µLW = τU

because of µ 6= 0 on Ω.
In the same way as above, we see from (4.13)

τ

µ
{t(X)u(Y )− t(Y )u(X)}+ g(K∇XW,Y )− g(K∇Y W,X)

= τ{g(∇Y W,X)− g(∇XW,Y )}.

(4.22)

In the next place, from (2.22) and (2.25) we have φU = −µW . Differentiating
this covariantly and using (2.6), we find

g(AU,X)ξ − φ∇XU = (Xµ)W + µ∇XW.

Putting X = ξ in this and making use of (2.29), we get

(4.23) µ∇ξW = 3AU − αU +∇α− (ξα)ξ − (ξµ)W,

which enables us to obtain

(4.24) Wα = ξµ.

5. Ricci Tensors of Semi-invariant Submanifolds

We will continue our arguments under the same hypotheses Rξφ = φRξ and
dt = 2θω for a scalar θ(6= 2c) as those in section 3. Further, we assume that
Sξ = g(Sξ, ξ)ξ is satisfied on a semi-invariant submanifold of codimension 3 in
Mn+1(c), c 6= 0. Then we have from (4.17)

(5.1) A2ξ = hAξ + (β − hα)ξ.

From this, and (2.22) and (2.24) we see that

(5.2) AW = µξ + (h− α)W.

In the next place, differentiating (5.2) covariantly along Ω, we find

(5.3) (∇XA)W +A∇XW = (Xµ)ξ + µ∇Xξ +X(h− α)W + (h− α)∇XW.
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By taking the inner product with W to this and using (2.26) and (5.2), we
obtain

(5.4) g((∇XA)W,W ) = −2g(AU,X) +Xh−Xα

because W is a unit orthogonal vector to ξ.
Applying (5.3) by ξ and using (2.26), we also obtain

(5.5) µg((∇XA)W, ξ) = (h− 2α)g(AU,X) + µ(Xµ),

which connected to (3.15) gives

(5.6) µ(∇ξA)W = (h− 2α)AU + µ∇µ− kµLW − cU,

or, using (3.10), (3.15) and (5.5),

(5.7) µ(∇WA)ξ = (h− 2α)AU − 2cU + µ∇µ.

Putting X = ξ in (5.4) and taking account of (5.5), we have

(5.8) Wµ = ξh− ξα.

Replacing X by ξ in (5.3) and using (5.6), we find

(h− 2α)AU − kµLW − cU + µ∇µ+ µ(A∇ξW − (h− α)∇ξW )

= µ(ξµ)ξ + µ2U + µ(ξh− ξα)W.

Substituting (4.23) and (4.24) into this and making use of (4.21), we find

3A2U − 2hAU + (αh− β − c− kτ)U +A∇α+
1

2
∇β − h∇α

= 2µ(Wα)ξ + (2α− h)(ξα)ξ + µ(ξh)W.

(5.9)

On the other hand, if we put X = µW in (4.1) and take account of (2.23),
(2.24) and (5.2), then we find αAU + (β − hα+ 2kτ)U = 0, which shows

(5.10) AU = λU,

where the function λ is defined, using Remark 4.2, by

(5.11) αλ = hα− β − 2kτ.

Differentiating (5.10) covariantly along Ω, we find

(∇XA)U +A∇XU = (Xλ)U + λ∇XU.

If we take the skew-symmetric part of this, then we get

µ(kτ − c)(η(Y )w(X)− η(X)w(Y )) + g(A∇XU, Y )− g(A∇Y U,X)

= (Xλ)u(Y )− (Y λ)u(X) + λ(g(∇XU, Y )− g(∇Y U,X)),
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where we have used (2.22), (2.25), (3.15) and (4.9). Replacing X by U in this and
using (5.10), we get

(5.12) A∇UU − λ∇UU = (Uλ)U − µ2∇λ.

Taking the inner product with W to this and remembering (5.2), we obtain

(5.13) µg(ξ,∇UU) + µ2(Wλ) + (h− α− λ)g(W,∇UU) = 0.

By the way, from KU = τU , we have

(5.14) (∇XK)U +K∇XU = τ∇XU,

which implies that g((∇XK)U,U) = 0. Because of (3.16), (4.9) and the last relation-
ship give (∇UK)U = 0, which connected to (4.13) and (5.14) yields g(W,∇UU) = 0.
Thus, (5.13) reformed as

µg(ξ,∇UU) + µ2(Wλ) = 0.

However, the first term of this vanishes identically because of (2.26) and (5.2), which
shows µ(Wλ) = 0 and hence

(5.15) Wλ = 0.

In the same way, we verify, using (2.26) and (5.2), that

(5.16) ξλ = 0.

Now, differentiating (2.25) covariantly and using (2.5), we find

(∇XA)ξ +AφAX = (Xα)ξ + αφAX + (Xµ)W + µ∇XW.

If we put X = µW in this and use (5.2), (5.7) and (5.10), then we find

(5.17) µ2∇WW − µ∇µ = (2hλ− 3αλ+ α2 − αh− 2c)U − µ(Wα)ξ − µ(Wµ)W.

Lemma 5.1. If M satisfies (4.1), (5.2) and dt = 2θω for a scalar θ(6= 2c), then we

have on Ω

(5.18) ∇k = (k − τ)U.

Proof. Using (3.21) and (4.8) we have

Xk = (ξk)η(X) + (k − τ)u(X)
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for any vector field X . Differentiating this covariantly along Ω and taking the
skew-symmetric part obtained, we find

η(Y )X(ξk)− η(X)Y (ξk) + (ξk){η(X)u(Y )− η(Y )u(X)

+ g(φAX, Y )− g(φAY,X)}+ (k − τ)du(X,Y ) = 0,

(5.19)

where we have used (2.5).
Now, we take an orthonormal frame filed {e0 = ξ, e1 = W, e2, · · · , en−1, en =

φe1 = 1
µ
U, en+1 = φe2, · · · , e2n−2 = φen−1} of M . Taking the trace of (2.27), we

obtain
2n−2∑

i=0

g(φ∇eiU, ei) = ξα− ξh.

Putting X = φei and Y = ei in (5.19) and summing up for i = 1, 2, · · · , n− 1,
we have

(k − τ)

2n−2∑

i=0

du(φei, ei) = ξk(α − h),

where we have used (2.22), (2.25), (5.2) and (5.10). Combining the last two rela-
tionships, we get

(5.20) (h− α)ξk = (k − τ)(ξh − ξα).

By the way, if we put X = µW in (3.25) and take account of (2.22), (3.10) and
(5.2), we obtain

(θ − c){AU − (h− α)U}+ kτ{AU + (h− α)U} = 0,

which connected to (4.9) and (5.10) yields

(5.21) λ(k + τ) + (h− α)(k − τ) = 0.

From this we have

(h− α+ λ)∇k + (k − τ)(∇h −∇α) + (k + τ)∇λ = 0.

So we have (h− α+ λ)ξk + (k − τ)(ξh− ξα) = 0 with the aid of (5.16). From this

and (5.20) we see that (2h− 2α+ λ)ξk = 0.
If ξk 6= 0 on Ω, then we have λ = 2(α− h), which together with (5.21) implies

that (h−α)(k+3τ) = 0 on this subset. We discuss our arguments on such a place.
So we have h − α = 0 from the last equation and hence λ = 0. Consequently we
have µ2 + 2kτ = 0 by virtue of (2.24) and (5.11). Differentiation with respect to ξ
gives µ(ξµ) + τ(ξk) = 0.

However, if we take the inner product with U to (5.7) and remember (2.24),
(5.10) and the fact that h− α = 0 and λ = 0, then we have µ∇µ = (µ2 + kτ + c)U
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and consequently ξµ = 0. Hence we have τ(ξk) = 0, a contradiction. Thus, we have
(5.18). This completes the proof. �

Lemma 5.2. Under the same hypotheses as those stated in Lemma 5.1, we have

k − τ 6= 0 on Ω.

Proof. If not, then we have k − τ = 0 on an open subset of Ω. We discuss our
argument on such a place. Then we have λ = 0 because of (5.21) and Remark 4.3.
So (5.10) and (5.11) turn out respectively to

(5.22) AU = 0,

(5.23) β − hα+ 2τ2 = 0.

We also have from (4.11) t = t(ξ)ξ − 2φU , which shows t(Y ) = t(ξ)η(Y ) −
2g(φU, Y ) for any vector Y . Differentiating this covariantly and using (2.5), (2.6)
and (5.22), we find

(∇Xt)Y = X(t(ξ))η(Y ) + t(ξ)g(φAX, Y )− 2g(φ∇XU, Y ),

from which, taking the skew-symmetric part with respect to X and Y and using
(3.1),

2θg(φX, Y ) = X(t(ξ))η(Y )− Y (t(ξ))η(X) + t(ξ){g(φAX, Y )− g(φAY,X)}

+ 2{g(φ∇Y U,X)− g(φ∇XU, Y )}.

On the other hand, we verify from (2.27) that

g(φ∇XU, Y )− g(φ∇Y U,X) + (Xα)η(Y )− (Y α)η(X)

= −2cg(φX, Y )− 2g(AφAX, Y ) + α(g(φAX, Y )− g(φAY,X)).

Combining the last two equations, it follows that

2(θ − 2c)g(φX, Y ) + t(ξ){g(φAX, Y )− g(φAY,X)}

= X(t(ξ))η(Y )− Y (t(ξ))η(X) + 2{2g(AφAX, Y ) + α(g(φAX, Y )

− g(φAY,X)) + (Xα)η(Y )− (Y α)η(X)}.

Putting Y = ξ in this and remembering (5.22), we find

(5.24) X(t(ξ)) + 2(Xα) = {ξ(t(ξ)) + 2ξα}η(X) + (t(ξ) + 2α)u(X).

Substituting this into the last equation, we obtain

2(θ − 2c)g(φX, Y ) = (t(ξ) + 2α)(u(X)η(Y )− u(Y )η(X)

+ g(φAX, Y )− g(φAY,X)) + 4g(AφAX, Y ).
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If we put X = µW in this and take account of (2.23), (5.2) and (5.22), then we
get

(5.25) 2(θ − 2c) = (t(ξ) + 2α)(h− α).

In the next step, differentiating (4.13) covariantly, we find

(∇XK)W +K∇XW + τ∇XW = 0,

from which, taking the skew-symmetric part and using (3.16) and (4.9),

τ

µ
(t(Y )u(X)− t(X)u(Y )) + g(K∇XW,Y )− g(K∇Y W,X)

= τ{(∇Y W )X − (∇XW )Y }.

(5.26)

If we put X = ξ in this and make use of (2.26), (4.23) and (5.22), then, we find

(5.27) K∇α+ τ∇α = 2τ(ξα)ξ + τ(2α+ t(ξ))U.

Replacing X by W in (5.26) and making use of (5.17), we have

µ(K∇µ+ τ∇µ) = 2τ(µ2 − α2 + hα+ 2c)U + 2µτ(Wα)ξ.

If we take the inner product with U to this and take account of (4.8), then we
obtain µ(Uµ) = (µ2 −α2 + hα+2c)µ2, which together with (2.24) and (5.23) gives

(5.28) µ(Uµ) = 2(µ2 + τ2 + c)µ2.

On the other hand, differentiating (5.22) covariantly with respect to ξ, we find
(∇ξA)U +A∇ξU = 0, which together with (4.19) (5.1) and (5.22) implies that

(∇ξA)U + (αh− β)Aξ − α(β − hα)ξ +Aφ∇α = 0.

Applying by φ, we have

(5.29) φ(∇ξA)U + (αh− β)U + φAφ∇α = 0.

Since we see from (3.15)

(∇UA)ξ − (∇ξA)U = µ(τ2 + c)W

by virtue of (2.25), (3.10) and (4.9), it follows that

(5.30) φ(∇UA)ξ = φ(∇ξA)U + (τ2 + c)U.

We also have from (2.27)

∇XU + g(A2ξ,X)ξ = φ(∇XA)ξ + φAφAX + αAX,
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which connected to (5.22) gives ∇UU = φ(∇UA)ξ. Thus, (5.30) reformed as

∇UU = φ(∇ξA)U + (τ2 + c)U.

Combining this to (5.29) and using (5.23), it follows that

(5.31) ∇UU = (c− τ2)U − φAφ∇α.

If we apply by A and take account of (5.12) with λ = 0 and (5.22), then we have
AφAφ∇α = 0.

Now, taking the inner product with U to (5.30) and making use of (2.22) ∼
(2.25) and (5.2), we obtain

(5.32) µ(Uµ) = (c− τ2)µ2 + (h− α)Uα.

However, applying (5.27) by U and using (4.8), we find 2Uα = (t(ξ) + 2α)µ2,
which connected to (5.25) gives (h − α)Uα = (θ − 2c)µ2. Substituting (5.28) and
this into (5.32), we find 2µ2 + 3c + 3τ2 = θ, which together with (4.10) gives
µ2 + τ2 + c = 0 and consequently µ is constant. Thus, we see, using (2.24) and
(5.23), that

(5.33) α(h− α) = τ2 − c.

Therefore, α(h− α) = const. Differentiation gives

(h− α)∇α + α(∇h−∇α) = 0,

which connected to (5.8) implies that (h−α)ξα = 0, where we have used µ = const.
Accordingly we have ξα = 0 by virtue of (5.33) and the fact that θ − 2c 6= 0.

Using (4.10) and (5.33), we can write (5.25) as

2(θ − 2c)α = (θ − 2c)(t(ξ) + 2α).

Thus, it follows that t(ξ) = 0 provided that θ − 2c 6= 0. Hence, (5.24) turns out to
be ∇α = αU , which implies du = 0. Therefore, it is clear that ∇UU = 0 because
of µ = const, which connected to (5.31) yields (c − τ2)U = αφAφU . So we have
c−τ2 = α(h−α), where we have used (2.23), (2.25) and (5.2). From this and (5.33)
it follows that θ − 2c = 0, a contradiction. Hence, Lemma 5.2 is proved. �

Lemma 5.3. Under the same hypotheses as those in Lemma 5.1, we have

(5.34) ∇α = (h− 3λ)U.

Proof. Because of Lemma 5.1 and Lemma 5.2, we can write (5.19) as du(X,Y ) = 0,
that is, g(∇XU, Y )− g(∇Y U,X) = 0. Putting X = ξ in this, and using (2.26) and
(4.19), we find

3φAU + αAξ − βξ + φ∇α+ µAW = 0,
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which together with (2.22), (2.25), (5.2) and (5.10) implies that

φ∇α+ (h− 3λ)µW = 0.

Thus, it follows that

(5.35) ∇α = (ξα)ξ + (h− 3λ)U.

We are now going to prove that ξα = 0.
Differentiation (5.21) with respect to ξ gives ξh− ξα = 0 with the aid of (5.16),

Lemma 5.1 and Lemma 5.2.
Using (5.10), (5.35) and this fact, we can write (5.9) as

(5.36)
1

2
∇β + (2hλ+ αh− β − c− kτ − h2)U = {2µ(Wα) + α(ξα)}ξ.

Since we have Wµ = 0 because of (5.8), if we take the inner product ξ to the
last equation and take account of (2.24), then we obtain α(Wα) = 0 and hence
Wα = 0 by virtue of Remark 4.2.

Differentiating (5.11) with respect to ξ and making use of (5.16), Lemma 5.1
and the fact that ξh− ξα = 0, we find

ξβ = (h+ α− λ)ξα.

On the other hand, if we differentiate (2.24) with respect to ξ and remember
Wα = 0 and (4.24), then we have ξβ = 2α(ξα). From this and the last relationship
we get (λ+ α− h)ξα = 0.

Now, if ξα 6= 0 on Ω, the we have λ = h − α on this subset. We discuss our
arguments on this subset. Then (5.21) yields λk = 0 and hence λ = 0 and h−α = 0.
So (5.35) and (5.36) are reduced respectively to

∇α = (ξα)ξ + αU,
1

2
∇β = α(ξα)ξ + (β + kτ + c)U.

We also have from (5.11) β = α2− 2kτ , which together with (5.18) implies that

1

2
∇β = α∇α − τ(k − τ)U.

Combining above equations, it follows that τ2 = c, that is, θ− 2c = 0, a contradic-
tion. This completes the proof of Lemma 5.3. �

6. Proof of Main Theorem

First of all, we will prove the following lemma.

Lemma 6.1. Let M be a real (2n − 1)-dimensional semi-invariant submanifold

of codimension 3 in a complex space form Mn+1(c), c 6= 0 satisfying dt = 2θω
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for a scalar θ 6= 2c. Suppose that M satisfies Rξφ = φRξ and at the same time

Sξ = g(Sξ, ξ)ξ. Then the distinguished normal is parallel in the normal bundle,

where S denotes the Ricci tensor of M .

Proof. Because of (5.19), Lemma 5.1 and Lemma 5.2, we have du = 0. So we have
from (5.14)

g(K∇XU, Y )− g(K∇Y U,X) + µτ{t(X)w(Y )− t(Y )w(X)} = 0,

where we have used (3.16) and (4.9). Putting X = ξ in this and using (2.25), (2.26),
(4.19) and (5.10), we find

K(3λµW + αAξ − βξ + φ∇α) + kµAW + µτt(ξ)W = 0,

which connected to (2.22), (3.10), (3.12), (4.13), (5.2) and (5.34) gives

(6.1) τt(ξ) + (h− α)(k + τ) = 0,

or, using (5.21)

(6.2) τ(k − τ)t(ξ) = λ(k + τ)2.

On the other hand, differentiating (4.12) covariantly along Ω, and taking ac-
count of (2.5), (2.6), (5.10) and (5.18), we get

(∇Xt)Y = X(t(ξ))η(Y ) + t(ξ)g(φAX, Y ) +
τ

k2
(k − τ)µu(X)w(Y )

− (1 +
τ

k
){λu(X)η(Y )− g(φ∇XU, Y ) + t(∇XY ),

from which taking the skew-symmetric part and using (2.25) and (3.1),

2θg(φX, Y ) +
τ

k2
(k − τ)µ(u(Y )w(X)− u(X)w(Y ))

= X(t(ξ))η(Y )− Y (t(ξ))η(X) + t(ξ){g(φAX, Y )− g(φAY,X)}

− (1 +
τ

k
){λ(u(X)η(Y )− u(Y )η(X))− g(φ∇XU, Y ) + g(φ∇Y U,X)}.

(6.3)

By the way, we have from (2.27) and (3.15)

g(φ∇XU, Y )− g(φ∇Y U,X) + (h+ λ− 3α)(u(X)η(Y )− u(Y )η(X))

= 2cg(φX, Y )− 2g(AφAX, Y ) + α(g(φAX, Y )− g(φAY,X)),

where we have used (3.10), (5.10) and (5.34).
Combining the last two equations, we obtain

2θg(φX, Y ) +
τ

k2
(k − τ)µ(u(Y )w(X)− u(X)w(Y ))− t(ξ)(g(φAX, Y )− g(φAY,X))

= X(t(ξ))η(Y )− Y (t(ξ))η(X) + (1 +
τ

k
){2cg(φX, Y ) + (h− 3λ)(u(X)η(Y )

−u(Y )η(X))− 2g(AφAX, Y ) + α(g(φAX, Y )− g(φAY,X))}.
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Putting Y = ξ in this and making use of (2.5) and (5.10), we find

(6.4) X(t(ξ)) = ξ(t(ξ))η(X) + {t(ξ) + (1 +
τ

k
)(λ+ α− h)}u(X),

which together with (6.1) yields

X(t(ξ)) = ξ(t(ξ))η(X) + (1 +
τ

k
)(λ+ t(ξ))u(X).

Substituting this into the last equation and using (5.21), we find

(6.5) 2θg(φX, Y ) +
τ

k2
µ(k − τ)(w(X)u(Y )− w(Y )u(X))

= (1 +
τ

k
){(h− 2λ+ t(ξ))(u(X)η(Y )− u(Y )η(X))

+2cg(φX, Y )+2g(AφAX, Y )+(h+t(ξ))(g(φAX, Y )−g(φAY,X))}.

Differentiating (6.1) covariantly and remembering (5.18), we find

τX(t(ξ)) = (α − h)(k − τ)u(X) + (k + τ)(Xα−Xh),

which connected to (5.21) yields

(6.6) τX(t(ξ)) = (k + τ)(Xα −Xh+ λu(X)).

By the way, we see, using (5.20), Lemma 5.1 and Lemma 5.2, that ξh− ξα = 0.
Thus, from the last equation, it follows that ξ(t(ξ)) = 0 and hence (6.4) can be
written as

X(t(ξ)) = {t(ξ) + (1 +
τ

k
)(λ − h+ α)}u(X),

which together with (6.1) gives

τX(t(ξ)) = {(k + 2τ +
τ2

k
)(α− h) + τλ(1 +

τ

k
)}u(X).

Combining this to (6.6), we get

(k + τ)(∇α −∇h+ λU) = (1 +
τ

k
){(k + τ)(α − h) + τλ}U,

which together with (5.21) gives

(6.7) k(∇α−∇h) = 2τ(λ+ α− h)U,

where we have used k + τ 6= 0.
If we differentiate (6.2) and take account of Lemma 5.1 and itself, we find

λ(k + τ)2U + τ(k − τ)∇t(ξ) = (k + τ)2∇λ+ 2λ(k2 − τ2)U,
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which together with (6.6), and Lemma 5.1 and Lemma 5.2 implies that (k+τ)∇λ =
(k − τ)(∇α −∇h) + 2τλU , or using (5.21) and (6.7),

(6.8) (k + τ)∇λ = 6τλU.

Now, if we put X = U and Y = W in (6.5) and using (2.23), (5.2) and (5.10),
then we find

2θ +
τ

k2
(k − τ)µ2 = (1 +

τ

k
){2c− 2λ(h− α) + (t(ξ) + h)(λ+ h− α)}.

By the way, it is seen, using (5.11) and (5.21), that (k−τ)2µ2+2k(αλ+τk−τ2) =
0. Thus, the last equation can be written as

θk(k − τ) − ταλ(k − τ)− τ2(k − τ)2

= c(k2 − τ2) + λ2(k + τ)2 − τλ(k + τ)(t(ξ) + h).

If we multiply k − τ to this and take account of (4.10), (5.21) and (6.2), then
we obtain

(6.9) λ2(k + τ)2 + 2ταλ(k − τ) + (k − τ)2(τ2 − c) = 0.

Differentiating this covariantly and using (5.18) and (6.8), we find

τ(k − τ)∇(αλ) + 6τλ2(k + τ)U = τλ{2λ(k + τ) + α(k − τ)}U,

which implies
(k − τ)∇(αλ) = λ{α(k − τ) − 4λ(k + τ)}U.

From this and (5.21) and (5.34), we have

α(k − τ)∇λ + 6τλ2U = 0,

which together with (6.8) yields λ{α(k − τ) + λ(k + τ)} = 0. Thus, it follows that
α(k − τ) + λ(k + τ) = 0 by virtue of (6.9), which connected to (5.21) gives h = 2α.
Further, we have from the last relationship (k + τ)∇λ + (k − τ)∇α = 0, which
together with (5.34) and (6.8) gives 6τλ + (k − τ)(2α − 3λ) = 0. Thus, it follows
that (8τ − 5k)λ = 0, and hence 5k = 8τ because of (6.9).
So, we see, using (5.18), that k is a constant on Ω and hence U = 0, a contradiction.
This completes the proof. �

According to Lemma 6.1 we can prove the following :

Lemma 6.2. Under the same hypotheses as those in Lemma 6.1, we have A(2) =
A(3) = 0 provided that r̄ − 2(n− 1)c ≤ 0.

Remark 6.3. This lemma proved in [13] for the case where θ − 2c < 0 and c > 0.
But, we need the condition r̄ − 2c(n− 1) ≤ 0 for the case where c < 0, where r̄ is
the scalar curvature of M . So we introduce the outline of the proof.
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The sketch of Proof. By Lemma 2.2 and Lemma 6.1, we have k = 0 and hence
m = 0 on M because of (3.10). Thus, (3.15)∼(3.20) turn out to be

(6.10) (∇XA)Y − (∇Y A)X = c{η(X)φY − η(Y )φX − 2g(φX, Y )ξ},

(6.11) (∇XK)Y − (∇Y K)X = t(X)LY − t(Y )LX,

(6.12) (∇XL)Y − (∇Y L)X = 0,

(6.13) KA−AK = 0, LA−AL = 0,

Since we have Kξ = 0 because of (3.10), differentiating Kξ = 0 covariantly
along M and using (2.5) and (3.12), we find

(6.14) (∇XK)ξ = −LAX.

If we take account of Lemma 5.2 and (4.10), then (4.15) reformed as

(6.15) K2X = τ ′(X − η(X)ξ),

where τ ′ = θ − c.
Differentiating (6.15) covariantly along M and using (2.5), we find

(∇XK)KY +K(∇XK)Y = −τ ′{η(Y )φAX + g(φAX, Y )ξ}.

Using the quite same method as those used to (3.26) from (3.14), we can derive
from the last equation the following :

2(∇XK)KY = τ ′{−2t(X)φY + η(X)(φA−Aφ)Y

+ g((φA −Aφ)X,Y )ξ + η(Y )(φA +Aφ)X},

(6.16)

where we have used (3.13) and (6.11).
By the way, if we take the trace ofK in (6.11), we have

∑
i∇eiKei = Lt because

of (3.10). If we use this fact to (6.16), we obtain

KLt = τ ′(φt+ U),

where we have used (2.5), which together with (3.11) gives τ ′U = 0 and consequently
U = 0 on M , that is Aξ = αξ because of (2.25). Therefore, if we take account of
Lemma 5.3 and (3.26), then we obtain

(6.17) τ ′(Aφ − φA) = 0.

In the following, we assume that τ ′ 6= 0 on M . Then, from this and (6.10) we
can verify the following (cf. [6], [16]) :

(6.18) A2 = αA+ c(I − η ⊗ ξ),
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(6.19) (∇XA)Y = −c(η(Y )φX + g(φX, Y )ξ).

Using (6.17), we can write (6.16) as

K(∇XK)Y = τ ′{−t(X)φY + η(X)φAY + g(φAX, Y )ξ}.

If we transform this by K and make use of (3.12), (6.11), (6.14) and (6.15),
then we have

(6.20) (∇XK)Y = t(X)LY − η(X)ALX − η(Y )LAX − g(ALX, Y )ξ.

Differentiating (3.12) covariantly alongM and using (2.6) and the last equation,
we find

(6.21) (∇XL)Y = −t(X)KY + η(X)AKY + η(Y )AKX + g(AKX,Y )ξ.

If we take the trace of L in this and remember (3.20) and the fact that TrA(2) =
TrA(3) = 0 and Aξ = αξ, we verify that

(6.22) Tr(AA(2)) = 0,

which connected to (6.18) gives

(6.23) Tr(A2A(2)) = 0.

For the orthonormal frame field {e0, e1, · · · , e2n−2} already selected, we write
g(ej, ei) = gji, g(φei, ej) = φij , (gji)

−1 = gji, g(Aei, ej) = Aij and ∇eiX =
(∇iX

h)eh for any vector X = X iei. And the Einstein summation convention will
be used. Then (6.20) can be written as

∇kKji = tkLji − ξkAjrLi
r − ξiAkrLj

r − ξjAirLk
r.

Differentiating this covariantly along M and taking account of (2.5), (3.20),
(6.18), (6.19) and itself, we find

∇h∇kKji = (∇htk)Lji − c(Kjhξkξi +Kkiξjξh + 2Kihξjξk) +Bhkji

− α(ξjξhAkrKi
r + ξkξiAjrKh

r + 2ξjξkAirKh
r)

+ (Ahsφj
s)(AkrLi

r) + (Ahsφk
s)(AirLj

r) + (Ahsφi
s)(AjrLk

r),

where Bhkji is a certain tensor with Bhkji = Bkhji, from which, taking the skew-
symmetric part with respect to h and k, and making use of (3.1), (6.17) and the
Ricci identity for Kji (for detail, see (4.17) of [13]),

RkhjrKi
r +RkhirKj

r

= 2θφhkLji − c{ξj(ξkKih − ξhKik) + ξi(ξkKjh − ξhKjk)}

− α{ξj(ξkAirKh
r − ξhAirKk

r) + ξi(ξkAjrKh
r − ξhAjrKk

r)}

+ (Ahsφj
s)(AkrLi

r)− (Aksφj
s)(AhrLi

r) + (Ahsφi
s)(AkrLj

r)

− (Aksφi
s)(AhrLj

r) + 2(Ahsφk
s)(AjrLi

r).

(6.24)
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Multiplying (6.24) with φkh and summing for k and h, and using (3.1), (3.11),
(3.12), (6.17) and (6.18), we find

(6.25) φkh(RkhjrKi
r +RkhirKj

r) = 4{c− (n− 1)θ}Lji + 2(h+ α)AjrLi
r.

On the other hand, from (2.15) we see, using (3.12), (6.15), (6.17) and (6.18),
that

φkh(RkhirKj
r +RkhjrKi

r) = 4{2θ− (2n+ 3)c}Lji − 4αAjrLi
r,

which connected to (6.25) implies that (for detail, see (4.19) of [13])

(h+ 3α)AL = 2{(n+ 1)θ − 2(n+ 2)c}L,

which connected to (3.14) yields

(h+ 3α)(AX − αη(X)ξ) = 2{(n+ 1)θ − 2(n+ 2)c}(X − η(X)ξ).

Taking the trace of (6.26), we have

(h+ 3α)(h− α) = 4(n− 1){(n+ 1)θ − 2c(n+ 2)},

which implies

(6.26) (h− α)2 + 4α(h− α) = δ,

where we put

(6.27) δ = 4(n− 1){(n+ 1)θ − 2c(n+ 2)}.

In the same way as above, by using properties of A and (2.15), (6.22), (6.23)
and (6.25), we obtain (for detail, see (4.21) of [13])

(4θ − 12c− h(2) − 3α2)AK = {4cα− (θ − 2c)(h− α)}K,

which connected to (6.15) yields

(6.28) (4θ − 12c− h(2) − 3α2)(h− α) = 2(n− 1){4cα− (θ − 2c)(h− α)}.

Since we have h(2) = αh+2c(n− 1) from (6.18), combining (6.27) to (6.28), we
obtain

(6.29) (θ − 3c)(h− α) = 2(n− 1)α(θ − 2c).

On the other hand, from (4.16) we verify that the scalar curvature r̄ of M is
given by

r̄ = 4c(n2 − 1)− 4(n− 1)τ ′ + h2 − h(2),

which connected to (6.18) gives

(6.30) r̄ = 2c(n− 1)(2n+ 1)− 4(n− 1)τ ′ + h(h− α).
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By the way, it is seen, using (4.10), that θ − 3c 6= 0 for c < 0. We also have
θ − 3c 6= 0 for c > 0,

In fact, if not, then we have θ − 3c = 0 on this open subset. Thus, it follows,
using (6.29), that

(6.31) α = 0, τ ′ = 2c.

Hence h2 = 4(n − 1)2c on the set by virtue of (6.26) and (6.27). Using this fact
and (6.31), we can write (6.30) as r̄ = 2c(n− 1)(4n− 5), a contradiction because of
r̄ − 2c(n − 1) ≤ 0 and c > 0. Therefore θ − 3c 6= 0 is proved. Thus, we can write
(6.29) as

h− α =
2(n− 1)

θ − 3c
(θ − 2c)α.

Substituting this into (6.26), we obtain

4(n− 1)(θ − 2c){(n+ 1)θ − 2(n+ 2)c}α2 = δ(θ − 3c)2,

which together (6.27) gives

(6.32) δ{(θ − 3c)2 − (θ − 2c)α2} = 0.

We notice here that δ 6= 0 if c < 0. We also see that δ 6= 0 for c > 0. In fact, if
not, then we have δ = 0. Then we have by (6.27)

θ − c =
n+ 3

n+ 1
c.

Using this fact and (6.26), we can write (6.30) as

r̄ − 2(n− 1)c =
4(n− 1)

n+ 1
(n2 − 3)c+ ε2,

where ε2 = 0 or 12α2, a contradiction because c > 0 and r̄ − 2(n − 1)c ≤ 0 was
assumed. Therefore (6.32) turns out to be

(6.33) (θ − 3c)2 = (θ − 2c)α2.

Accordingly, if we combine (6.29) to (6.33), then we obtain α(h − α) = 2(n −
1)(θ − 3c), which together with (6.26) yields

h(h− α) = 2(n− 1)(2n− 1)τ ′ − 4n(n− 1)c.

Using this, we can write (6.30) as

r̄ − 2c(n− 1) = 2(n− 1)(2n− 3)τ ′.

Therefore we have τ ′ = 0 if r̄ − 2c(n− 1) ≤ 0. This completes the proof of Lemma
6.2. �
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Let N0(p) = {v ∈ T⊥
p (M) : Av = 0} and H0(p) be the maximal J-invariant

subspace of N0(p). As a consequence of Lemma 6.2, we have A(2) = A(3) = 0, the
orthogonal complement of H0(p) is invariant under parallel translation with respect
to the normal connection because of ∇⊥C = 0. Thus, by the reduction theorem
for Pn+1C([19]) and Hn+1C([9], [11]), there exists a totally geodesic complex space
form including M in Mn+1(c), we conclude that

Theorem 6.4. Let M be a real (2n − 1)-dimensional (n > 2) semi-invariant

submanifold of codimension 3 in a complex space form Mn+1(c), c 6= 0 with constant

holomorphic sectional curvature 4c such that the third fundamental form t satisfies
dt = 2θω for a nonzero scalar θ − 2c 6= 0 and r̄ − 2c(n− 1) ≤ 0, where ω(X,Y ) =
g(φX, Y ) for any vector fields X and Y on M . If M satisfies Rξφ = φRξ and at

the same time Sξ = g(Sξ, ξ)ξ, then M is a real hypersurface in a complex space

form Mn(c), c 6= 0.

Since we have ∇⊥C = 0, we can write (2.16) and (4.1) as

(∇XA)Y − (∇Y A)X = c{η(X)φY − η(Y )φX − 2g(φX, Y )ξ},

α(φAX −AφX)− g(Aξ,X)U − g(U,X)Aξ = 0

respectively. Making use of (2.5), (2.6) and the above equations, it is prove in [16]
that g(U,U) = 0, that is, M is a Hopf real hypersurface. Hence, we conclude that
α(Aφ − φA) = 0 and hence Aξ = 0 or Aφ = φA. Since M is a Hopf hypersurface,
Aξ = 0 means that α = 0. Here, we note that the case α = 0 correspond to the case
of tube of radius π/4 in PnC([5],[6]). But, in the case HnC it is known that α never
vanishes for Hopf hypersurfaces (cf.[3]) Thus, owing to Theorem 6.4, Theorem O
and Theorem MR, we have

Main Theorem. Let M be a real (2n − 1)-dimensional (n > 2) semi-invariant

submanifold of codimension 3 in a complex space form Mn+1(c), c 6= 0 with con-

stant holomorphic sectional curvature 4c such that the Ricci tensor S satisfies

Sξ = g(Sξ, ξ)ξ and the third fundamental form t satisfies dt = 2θω for a scalar

θ −2c(6= 0) and satisfies r̄ − 2c(n− 1) ≤ 0, where S and r̄ denote the Ricci tensor

and the scalar curvature of M , respectively. Then Rξφ = φRξ holds on M if and

only if M is locally congruent to one of the following hypersurfaces :

(I) in case that Mn(c) = PnC,

(A1) a geodesic hypersphere of radius r, where 0 < r < π/2 and r 6= π/4,

(A2) a tube of radius r over a totally geodesic PkC for some k ∈ {1, ..., n−2},
where 0 < r < π/2 and r 6= π/4,

(T ) a tube of radius π/4 over a certain complex submanifold in PnC;

(II) in case that Mn(c) = HnC,

(A0) a horosphere,
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(A1) a geodesic hypersphere or a tube over a complex hyperbolic hyperplane

Hn−1C,

(A2) a tube over a totally geodesic HkC for some k ∈ {1, ..., n− 2}.

Remark 6.5. Because of (4.10), it is clear that θ 6= 0 if c > 0, and θ − 2c 6= 0 if
c < 0.
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