# Submanifolds of Codimension 3 in a Complex Space Form with Commuting Structure Jacobi Operator 

U-Hang Ki<br>The National Academy of Sciences, Seoul 06579, Korea<br>e-mail: uhangki2005@naver.com<br>Hyunjung Song*<br>Department of Mathematics Hankuk University of Foreign Studies, Seoul 02450, Korea<br>$e$-mail: hsong@hufs.ac.kr

Abstract. Let $M$ be a semi-invariant submanifold with almost contact metric structure $(\phi, \xi, \eta, g)$ of codimension 3 in a complex space form $M_{n+1}(c)$ for $c \neq 0$. We denote by $S$ and $R_{\xi}$ be the Ricci tensor of $M$ and the structure Jacobi operator in the direction of the structure vector $\xi$, respectively. Suppose that the third fundamental form $t$ satisfies $d t(X, Y)=2 \theta g(\phi X, Y)$ for a certain scalar $\theta \neq 2 c$ and any vector fields $X$ and $Y$ on $M$. In this paper, we prove that if it satisfies $R_{\xi} \phi=\phi R_{\xi}$ and at the same time $S \xi=g(S \xi, \xi) \xi$, then $M$ is a real hypersurface in $M_{n}(c)\left(\subset M_{n+1}(c)\right)$ provided that $\bar{r}-2(n-1) c \leq 0$, where $\bar{r}$ denotes the scalar curvature of $M$.

## 1. Introduction

A submanifold $M$ is called a $C R$ submanifold of a Kaehlerian manifold $\tilde{M}$ with complex structure $J$ if there exists a differentiable distribution $\triangle: p \rightarrow \triangle_{p} \subset M_{p}$ on $M$ such that $\triangle$ is J-invariant and the complementary orthogonal distribution $\Delta^{\perp}$ is totally real, where $M_{p}$ denotes the tangent space at each point $p$ in $M$ ([1], [25]). In particular, $M$ is said to be a semi-invariant submanifold provided that $\operatorname{dim} \triangle^{\perp}=$ 1. The unit normal in $J \triangle^{\perp}$ is called the distinguished normal to the semi-invariant submanifold ([4], [23]). In this case, $M$ admits an induced almost contact metric structure $(\phi, \xi, \eta, g)$. A typical example of a semi-invariant submanifold is real hypersurfaces. New examples of nontrivial semi-invariant submanifolds in a complex

[^0]projective space $P_{n} \mathbb{C}$ are constructed in [13] and [20]. Therefore we may expect to generalize some results which are valid in a real hypersurface to a semi-invariant submanifold.

An n-dimensional complex space form $M_{n}(c)$ is a Kaehlerian manifold of constant holomorphic sectional curvature $4 c$. As is well known, complete and simply connected complex space forms are isometric to a complex projective space $P_{n} \mathbb{C}$, or a complex hyperbolic space $H_{n} \mathbb{C}$ according as $c>0$ or $c<0$.

For the real hypersurface of a complex space form $M_{n}(c)$, many results are known. One of them, Takagi([21], [22]) classified all the homogeneous real hypersurfaces of $P_{n} \mathbb{C}$ as six model spaces which are said to be $A_{1}, A_{2}, B, C, D$ and E , and Cecil-Ryan ([5]) and Kimura ([14]) proved that they are realized as the tubes of constant radius over Kaehlerian submanifolds when the structure vector field $\xi$ is principal.

On the other hand, real hypersurfaces in $H_{n} \mathbb{C}$ have been investigated by Berndt ([2]), Montiel and Romero ([15]) and so on. Berndt ([2]) classified all real hypersurfaces with constant principal curvatures in $H_{n} \mathbb{C}$ and showed that they are realized as the tubes of constant radius over certain submanifolds. Also such kinds of tubes are said to be real hypersurfaces of type $A_{0}, A_{1}, A_{2}$ or type $B$.

Let $M$ be a real hypersurface of type $A_{1}$ or type $A_{2}$ in a complex projective space $P_{n} \mathbb{C}$ or that of type $A_{0}, A_{1}$ or $A_{2}$ in a complex hyperbolic space $H_{n} \mathbb{C}$. Now, hereafter unless otherwise stated, such hypersurfaces are said to be of type $(A)$ for our convenience sake.

Characterization problems for a real hypersurface of type $(A)$ in a complex space form were studied by many authors ([6], [7], [8], [15], [16], [18], etc.).

Two of them, we introduce the following characterization theorems due to Okumura [18] for $c>0$ and Montiel and Romero [15] for $c<0$ respectively.

Theorem O. Let $M$ be a real hypersurface of $P_{n} \mathbb{C}, n \geq 2$. If it satisfies

$$
\begin{equation*}
g((A \phi-\phi A) X, Y)=0 \tag{1.1}
\end{equation*}
$$

for any vector fields $X$ and $Y$, then $M$ is locally congruent to a tube of radius $r$ over one of the following Kaehlerian submanifolds:
$\left(A_{1}\right)$ a hyperplane $P_{n-1} \mathbb{C}$, where $0<r<\pi / 2$,
$\left(A_{2}\right)$ a totally geodesic $P_{k} \mathbb{C}(1 \leq k \leq n-2)$, where $0<r<\pi / 2$.
Theorem MR. Let $M$ be a real hypersurface of $H_{n} \mathbb{C}, n \geq 2$. If it satisfies (1.1), then $M$ is locally congruent to one of the following hypersurface :
$\left(A_{0}\right)$ a horosphere in $H_{n} \mathbb{C}$, i.e., a Montiel tube,
$\left(A_{1}\right)$ a geodesic hypersphere, or a tube over a hyperplane $H_{n-1} \mathbb{C}$,
$\left(A_{2}\right)$ a tube over a totally geodesic $H_{k} \mathbb{C}(c \leq k \leq n-2)$.

Denoting by $R$ the curvature tensor of the submanifold, we define the Jacobi operator $R_{\xi}=R(\cdot, \xi) \xi$ with respect to the structure vector $\xi$. Then $R_{\xi}$ is a self adjoint endomorphism on the tangent space of a $C R$ submanifold.

Using several conditions on the structure Jacobi operator $R_{\xi}$, characterization problems for real hypersurfaces of type $(A)$ have recently studied. In the previous paper $([7])$, Cho and one of the present authors gave another characterization of real hypersurface of type $(A)$ in a complex projective space $P_{n} \mathbb{C}$. Namely they prove the following :

Theorem CK.([7]) Let $M$ be a connected real hypersurface of $P_{n} \mathbb{C}$ if it satisfies (1) $R_{\xi} A \phi=\phi A R_{\xi}$ or (2) $R_{\xi} \phi=\phi R_{\xi}, R_{\xi} A=A R_{\xi}$, then $M$ is of type $(A)$, where $A$ denotes the shape operator of $M$.

On the other hand, semi-invariant submanifolds of codimension 3 in a complex projective space $P_{n+1} \mathbb{C}$ have been studied in [10], [12], [13] and so on by using properties of induced almost contact metric structure and those of the third fundamental form of the submanifold. In the preceding work, Ki, Song and Takagi ([13]) assert the following:
Theorem KST.([13]) Let $M$ be a real ( $2 n-1$ )-dimensional semi-invariant submanifold of codimension 3 in a complex projective space $P_{n+1} \mathbb{C}$ with constant holomorphic sectional curvature $4 c$. If the structure vector $\xi$ is an eigenvector for the shape operator in the direction of the distinguished normal and the third fundamental form $t$ satisfies $d t=2 \theta \omega$ for a certain scalar $\theta(<2 c)$, where $\omega(X, Y)=g(\phi X, Y)$ for any vectors $X$ and $Y$ on $M$, then $M$ is a Hopf hypersurface in a complex projective space $P_{n} \mathbb{C}$.

In this paper, we consider a semi-invariant submanifold $M$ of codimension 3 in a complex space form $M_{n+1}(c), c \neq 0$ which satisfies $R_{\xi} \phi=\phi R_{\xi}$ and at the same time $S \xi=g(S \xi, \xi) \xi$ such that the third fundamental form $t$ satisfies $d t=2 \theta \omega$ for a certain scalar $\theta(\neq 2 c)$ and the scalar curvature $\bar{r}$ of $M$ satisfies $\bar{r}-2 c(n-1) \leq 0$, where $S$ denotes the Ricci tensor of $M$. In the present paper, we prove that $M$ is a real hypersurface of type $(A)$ in $M_{n}(c)$ mentioned Theorem O and Theorem MR. Our main theorem stated in section 6.

All manifolds in the present paper are assumed to be connected and of class $C^{\infty}$ and the semi-invariant submanifolds are supposed to be orientable.

## 2. Preliminaries

Let $\tilde{M}$ be a real $2(n+1)$-dimensional Kaehlerian manifold with parallel almost complex structure $J$ and a Riemannian metric tensor $G$. Let $M$ be a real ( $2 n-1$ )dimensional Riemannian manifold isometrically immersed in $\tilde{M}$. We denote by $g$ the Riemannian metric tensor on $M$ from that of $\tilde{M}$.

We denote by $\tilde{\nabla}$ the operator of covariant differentiation with respect to the metric tensor $G$ on $\tilde{M}$ and by $\nabla$ the one on $M$. Then the Gauss and Weingarten
formulas are given respectively by

$$
\begin{align*}
& \tilde{\nabla}_{X} Y=\nabla_{X} Y+\sum_{i=1}^{3} g\left(A^{(i)} X, Y\right) \mathrm{C}^{(i)}  \tag{2.1}\\
& \tilde{\nabla}_{X} \mathcal{C}^{(i)}=-A^{(i)} X+\sum_{j=1}^{3} l_{j}^{(i)}(X) \mathcal{C}^{(j)}
\end{align*}
$$

for any vector fields $X$ and $Y$ tangent to $M$ and any vector field $\mathcal{C}^{(i)}$ normal to $M$, where $A^{(i)}$ are called the second fundamental forms with respect to the normal vector $\mathcal{C}^{(i)}$.

As is well-known, a submanifold of a Kaehlerian manifold is said to be a $C R$ submanifold ([1], [25]) if it is endowed with a pair of mutually orthogonal and complementary differentiable distribution $\left(T, T^{\perp}\right)$ such that for any point $p \in M$ we have $J T_{p}=T_{p}, J T_{p}^{\perp} \subset T_{p}^{\perp} M$, where $T_{p}^{\perp} M$ denotes the normal space of $M$ at $p$. In particular, $M$ is said to be semi-invariant submanifold provided that $\operatorname{dim} T^{\perp}=1([4]$, [23]). In this case the unit vector field in $J T^{\perp}$ is called a distinguished normal to the semi-invariant submanifold and denote by $C$ ([4], [23]).

More precisely, we choose an orthonormal basis $e_{1}, \cdots, e_{2 n-2}, \xi$ of $M_{p}$ in such a way that $e_{1}, e_{2}, \cdots, e_{2 n-2} \in T$, where $M_{p}$ denotes the tangent space to $M$ at each point $p$ in $M$. Then we see that

$$
G\left(J \xi, e_{i}\right)=-G\left(\xi, J e_{i}\right)=0
$$

for $i=1, \cdots, 2 n-2$.
From now on we consider $M$ is a real $(2 n-1)$-dimensional semi-invariant submanifold of a Kaehlerian manifold $\tilde{M}$ of real dimension $2(n+1)$. Then we can write ([4], [24])

$$
\begin{equation*}
J X=\phi X+\eta(X) C, \quad J C=-\xi, \quad J D=-E, \quad J E=D \tag{2.2}
\end{equation*}
$$

where we have put $g(\phi X, Y)=G(J X, Y), \eta(X)=G(J X, \mathcal{C})$ for any vector fields $X$ and $Y$ tangent to $M$, and put $\mathcal{C}^{(1)}=C, \mathcal{C}^{(2)}=D$ and $\mathcal{C}^{(3)}=E$.

By the Hermitian property of $J$, we see, using (2.2), that the aggregate ( $\phi, \xi, \eta, g$ ) is an almost contact metric structure on $M$, that is, we have

$$
\begin{gathered}
\phi^{2} X=-X+\eta(X) \xi, \quad \phi \xi=0, \quad \eta(\xi)=1, \quad \eta(X)=g(\xi, X), \\
g(\phi X, \phi Y)=g(X, Y)-\eta(X) \eta(Y)
\end{gathered}
$$

for any vectors $X$ and $Y$ on $M$.
We can also write the second equation of (2.1) as

$$
\begin{gather*}
\tilde{\nabla}_{X} C=-A X+l(X) D+m(X) E,  \tag{2.3}\\
\tilde{\nabla}_{X} D=-K X-l(X) C+t(X) E, \\
\tilde{\nabla}_{X} E=-L X-m(X) C-t(X) D
\end{gather*}
$$

because $C, D$ and $E$ are mutually orthogonal, where we have put

$$
\begin{align*}
& A^{(1)}=A, \quad A^{(2)}=K, \quad A^{(3)}=L  \tag{2.4}\\
& l=l_{2}^{(1)}=-l_{1}^{(2)}, \quad m=l_{3}^{(1)}=-l_{1}^{(3)}, \quad t=l_{3}^{(2)}=-l_{2}^{(3)},
\end{align*}
$$

In the sequel, we denote the normal components of $\tilde{\nabla}_{X} C$ by $\nabla^{\perp} C$. The distinguished normal $C$ is said to be parallel in the normal bundle if we have $\nabla^{\perp} C=0$, that is, $l$ and $m$ vanish identically.

From the Kaehler condition $\tilde{\nabla} J=0$ and take account of the Gauss and Weingarten formulas, we obtain from (2.2)

$$
\begin{equation*}
\nabla_{X} \xi=\phi A X \tag{2.5}
\end{equation*}
$$

$$
\begin{equation*}
L X=-\phi K X+l(X) \xi, \quad L \phi X=-K X+\eta(X) K \xi \tag{2.8}
\end{equation*}
$$

for any vectors $X$ and $Y$ on $M$. The last two relationships give

$$
\begin{gather*}
l(X)=g(L \xi, X), \quad m(X)=-g(K \xi, X),  \tag{2.9}\\
m(\xi)=-k, \quad l(\xi)=\operatorname{Tr} A^{(3)}, \tag{2.10}
\end{gather*}
$$

where, we have put $k=\operatorname{Tr} A^{(2)}$.
We notice here that there is no loss of generality such that we may assume $T_{r} A^{(3)}=0$. In fact, a normal vector $v$ of $M$ we denote by $A v$ the second fundamental tensor of $M$ in the direction of $v$. Then we have $A_{-v}=-A v$. Hence there is a unit normal vector $D^{\prime}$ of $M$ in the plane spanned by two vectors $D$ and $E$ such that $\operatorname{Tr} A_{D^{\prime}}=0$, which proves our assertion. Therefore we have by (2.10)

$$
\begin{equation*}
l(\xi)=0 \tag{2.11}
\end{equation*}
$$

Applying (2.8) by $\phi$ and using (2.7), we find

$$
-g(K X, Y)-m(X) \eta(Y)=g(\phi K X, \phi Y)-\eta(X) l(\phi Y)
$$

If we take the skew-symmetric part of this with respect to $X$ and $Y$, then we obtain

$$
-m(X) \eta(Y)+m(Y) \eta(X)=\eta(X) l(\phi Y)-\eta(Y) l(\phi X)
$$

which together with (2.10) gives

$$
\begin{equation*}
l(\phi X)=m(X)+k \eta(X) \tag{2.12}
\end{equation*}
$$

Similarly we have

$$
\begin{equation*}
m(\phi X)=-l(X) \tag{2.13}
\end{equation*}
$$

because of (2.10).
Transforming (2.7) by $L$ and using (2.8) and (2.9), we obtain

$$
\begin{equation*}
g(K L X, Y)+g(L K X, Y)=-l(X) m(Y)-l(Y) m(X) \tag{2.14}
\end{equation*}
$$

In the rest of this paper we shall suppose that $\tilde{M}$ is a Kaehlerian manifold of constant holomorphic sectional curvature $4 c$, which is called a complex space form and denote by $M_{n+1}(c)$. Then equations of the Gauss and Codazzi are given by

$$
\begin{gather*}
R(X, Y) Z=c\{g(Y, Z) X-g(X, Z) Y+g(\phi Y, Z) \phi X-g(\phi X, Z) \phi Y  \tag{2.15}\\
-2 g(\phi X, Y) \phi Z\}+g(A Y, Z) A X-g(A X, Z) A Y \\
+g(K Y, Z) K X-g(K X, Z) K Y+g(L Y, Z) L X-g(L X, Z) L Y \\
\left(\nabla_{X} A\right) Y-\left(\nabla_{Y} A\right) X-l(X) K Y+l(Y) K X  \tag{2.16}\\
-m(X) L Y+m(Y) L X=c\{\eta(X) \phi Y-\eta(Y) \phi X-2 g(\phi X, Y) \xi\} \\
 \tag{2.17}\\
\begin{array}{c}
\left(\nabla_{X} K\right) Y-\left(\nabla_{Y} K\right) X+l(X) A Y-l(Y) A X-t(X) L Y+t(Y) L X=0 \\
\quad\left(\nabla_{X} L\right) Y-\left(\nabla_{Y} L\right) X \\
+m(X) A Y-m(Y) A X \\
\\
\quad+t(X) K Y-t(Y) K X=0
\end{array} \tag{2.18}
\end{gather*}
$$

where $R$ is the Riemann-Christoffel curvature tensor on $M$, and those of the Ricci by

$$
\begin{align*}
&\left(\nabla_{X} l\right)(Y)-\left(\nabla_{Y} l\right)(X)+ g(K A X, Y)-g(A K X, Y)  \tag{2.19}\\
&+m(X) t(Y)-m(Y) t(X)=0 \\
&\left(\nabla_{X} m\right)(Y)-\left(\nabla_{Y} m\right)(X)+g(L A X, Y)-g(A L X, Y)  \tag{2.20}\\
&+t(X) l(Y)-t(Y) l(X)=0 \\
&\left(\nabla_{X} t\right)(Y)-\left(\nabla_{Y} t\right)(X)+g(L K X, Y)-g(K L X, Y)  \tag{2.21}\\
&+l(X) m(Y)-l(Y) m(X)=2 c g(\phi X, Y)
\end{align*}
$$

In what follows, to write our formulas in a convention form, we denote by $\alpha=\eta(A \xi), \beta=\eta\left(A^{2} \xi\right), \operatorname{Tr} A=h, \operatorname{Tr} A^{(2)}=k, \operatorname{Tr}\left({ }^{t} A A\right)=h_{(2)}$ and for a function $f$ we denote by $\nabla f$ the gradient vector field of $f$.

Now, we put $\nabla_{\xi} \xi=U$ in the sequel. Then $U$ is orthogonal to $\xi$ because of (2.5). From now on we put

$$
\begin{equation*}
A \xi=\alpha \xi+\mu W \tag{2.22}
\end{equation*}
$$

where $W$ is a unit vector field orthogonal to $\xi$. Then we have

$$
\begin{equation*}
U=\mu \phi W \tag{2.23}
\end{equation*}
$$

because of (2.5). So, $W$ is orthogonal to $U$. Further, we have

$$
\begin{equation*}
\mu^{2}=\beta-\alpha^{2} . \tag{2.24}
\end{equation*}
$$

From (2.22) and (2.23) we have

$$
\begin{equation*}
\phi U=-A \xi+\alpha \xi \tag{2.25}
\end{equation*}
$$

which together with (2.5) and (2.22) yields

$$
\begin{equation*}
g\left(\nabla_{X} \xi, U\right)=\mu g(A W, X), \quad \mu g\left(\nabla_{X} W, \xi\right)=g(A U, X) \tag{2.26}
\end{equation*}
$$

because $W$ is orthogonal to $\xi$.
Differentiating (2.25) covariantly along $M$ and using (2.5) and (2.6), we find

$$
\begin{equation*}
\left(\nabla_{X} A\right) \xi=-\phi \nabla_{X} U+g(A U+\nabla \alpha, X) \xi-A \phi A X+\alpha \phi A X \tag{2.27}
\end{equation*}
$$

which enables us to obtain

$$
\begin{equation*}
\left(\nabla_{\xi} A\right) \xi=2 A U+\nabla \alpha-2 k L \xi \tag{2.28}
\end{equation*}
$$

Because of (2.5), (2.26) and (2.27), we verify that

$$
\begin{equation*}
\nabla_{\xi} U=3 \phi A U+\alpha A \xi-\beta \xi+\phi \nabla \alpha-2 k(K \xi-k \xi) . \tag{2.29}
\end{equation*}
$$

In the next place, the Jacobi operators $R_{\xi}$ is given by

$$
\begin{align*}
R_{\xi} X=R(X, \xi) \xi & =c(X-\eta(X) \xi)+\alpha A X-\eta(A X) A \xi+k K X  \tag{2.30}\\
& -m(X) K \xi-l(X) L \xi
\end{align*}
$$

where we have used (2.9), (2.10) and (2.15).
Suppose that $R_{\xi} \phi=\phi R_{\xi}$ holds on $M$. Then from (2.30) we have

$$
\begin{align*}
\alpha(\phi A X-A \phi X) & =g(A \xi, X) U+g(U, X) A \xi+2 k L X  \tag{2.31}\\
& -2 k\{l(X) \xi+\eta(X) L \xi\}
\end{align*}
$$

where we have used (2.5), (2.8) and (2.12).

## 3. The Third Fundamental Forms of Semi-Invariant Submanifolds

In this section we shall suppose that $M$ is a semi-invariant submanifold of codimension 3 in a complex space form $M_{n+1}(c), c \neq 0$ and that the third fundamental form $t$ satisfies

$$
\begin{equation*}
d t=2 \theta \omega, \quad \omega(X, Y)=g(\phi X, Y) \tag{3.1}
\end{equation*}
$$

for a certain scalar $\theta$ and any vector fields $X$ and $Y$ on $M$, where $d$ denotes the exterior differential operator. Then (2.21) reformed as

$$
g(L K X, Y)-g(K L X, Y)+l(X) m(Y)-l(Y) m(X)=-2(\theta-c) g(\phi X, Y)
$$

or, using (2.14)

$$
\begin{equation*}
g(L K X, Y)+l(X) m(Y)=-(\theta-c) g(\phi X, Y) \tag{3.2}
\end{equation*}
$$

which together with $(2.9) \sim(2.11)$ implies that

$$
\begin{equation*}
K L \xi=k L \xi, \quad L K \xi=0 \tag{3.3}
\end{equation*}
$$

Differentiating (3.1) covariantly along $M$ and using (2.6) and the first Bianchi identity, we find

$$
(X \theta) \omega(Y, Z)+(Y \theta) \omega(Z, X)+(Z \theta) \omega(X, Y)=0
$$

which implies $(n-2) X \theta=0$. Thus $\theta(\geq c)$ is constant if $n>2$.
For the case where $\theta=c$ in (3.1) we have $d t=2 c \omega$. In this case, the normal connection of $M$ is said to be $L$-flat $([18])$.
Lemma 3.1. Let $M$ be a semi-invariant submanifold with L-flat normal connection in $M_{n+1}(c), c \neq 0$. If $A \xi=\alpha \xi$, then we have $\nabla^{\perp} C=0$ and $A^{(2)}=A^{(3)}=0$.

Proof. From (3.2) we have

$$
T_{r}\left({ }^{t} A^{(2)} A^{(2)}\right)-\|K \xi\|^{2}+\|L \xi\|^{2}=2(n-1)(\theta-c)
$$

because of (2.7), (2.9) and (2.12), which implies

$$
\left\|A^{(2)}-k \eta \otimes \xi\right\|^{2}+\|L \xi\|^{2}=2(n-1)(\theta-c)
$$

where $\|F\|^{2}=g(F, F)$ for any vector field $F$ on $M$. Thus, by our hypothesis $\theta=c$, we have $A^{(2)}=k \eta \otimes \xi$.

In the same way, we see from $(2.8),(2.10),(2.13)$ and (3.2) that $A^{(3)}=0$. And hence $m(X)=-k \eta(X)$ and $l=0$ because of (2.9). Therefore, it suffices to show that $k=0$. Using these facts, (2.19) reformed as

$$
k\{\eta(X) A \xi-g(A \xi, X) \xi\}=k(\eta(X) t-t(X) \xi)
$$

which together with $A \xi=\alpha \xi$ gives

$$
\begin{equation*}
k(t-t(\xi) \xi)=0 \tag{3.4}
\end{equation*}
$$

We also have from (2.18)

$$
k\{\eta(X)(A Y+t(Y) \xi)-\eta(Y)(A X+t(X) \xi)\}=0
$$

which implies $k(h-\alpha)=0$. Form this and (3.4) we verify that $k=0$. This completes the proof.

Applying (3.2) by $\phi$ and taking account of (2.7) and (2.13), we find

$$
\begin{equation*}
K^{2} X+\eta(X) K^{2} \xi+l(X) L \xi=(\theta-c)(X-\eta(X) \xi) \tag{3.5}
\end{equation*}
$$

which implies $\eta(X) K^{2} \xi-g\left(K^{2} \xi, X\right) \xi=0$. Thus, it follows that

$$
\begin{equation*}
K^{2} \xi=\left(\|K \xi\|^{2}\right) \xi \tag{3.6}
\end{equation*}
$$

by virtue of (2.9). Thus, (3.5) becomes

$$
K^{2} X+l(X) L \xi+\|K \xi\|^{2} \eta(X) \xi=(\theta-c)(X-\eta(X) \xi)
$$

Putting $X=L \xi$ in (2.8) and taking account of (2.12) and (3.3), we obtain

$$
\begin{equation*}
L^{2} \xi=k K \xi+\left(\|K \xi\|^{2}+k^{2}\right) \xi \tag{3.7}
\end{equation*}
$$

If we put $X=L \xi$ in (3.2) and make use of (2.13) and (3.2), we find

$$
\left(\theta-c-\|K \xi\|^{2}\right) L \xi=0
$$

Similarly, we verify, using (3.2) and (3.7), that

$$
\left(\theta-c-\|L \xi\|^{2}-k^{2}\right)\left(\|K \xi\|^{2}-k^{2}\right)=0
$$

Let $\|L \xi\| \neq 0$ at every point of $M$ and suppose that this subset does not void. Then we have $\|K \xi\|^{2}=\theta-c$ and $\|L \xi\|^{2}+k^{2}=\theta-c$ on the subset. Using these facts, we can verify that (for detail, see (2.22) and (2.24) of [13])

$$
\begin{equation*}
\nabla_{X} L \xi=t(X) K \xi-A K X-k A X \tag{3.9}
\end{equation*}
$$

on the set. Differentiating (3.8) covariantly and taking the skew-symmetric part obtained, we find

$$
(\theta-2 c)(\eta(X) K \xi-m(X) \xi)=0
$$

where we have used (2.12), (2.16), (3.3) and (3.9), which shows that $(\theta-2 c)(m(X)+$ $k \eta(X))=0$ and hence $\theta=2 c$ on this subset. Thus, from the first equation of (2.3) we have

Lemma 3.2. Let $M$ be a semi-invariant submanifold of codimension 3 in $M_{n+1}(c)$, $c \neq 0$ satisfying (3.1). If $\theta-2 c \neq 0$, then $\nabla^{\perp} C=-k \xi E$ on $M$.

In the following we assume that $M$ satisfies (3.1) with $\theta-2 c \neq 0$. Then we have

$$
\begin{equation*}
L \xi=0, \quad K \xi=k \xi \tag{3.10}
\end{equation*}
$$

because of (2.9). It is, using (3.10), clear that (2.7), (2.8) and (3.2) are reduced respectively to

$$
\begin{gather*}
\phi L X=K X-k \eta(X) \xi,  \tag{3.11}\\
L=K \phi  \tag{3.12}\\
g(L K X, Y)+(\theta-c) g(\phi X, Y)=0 . \tag{3.13}
\end{gather*}
$$

From the last two equations, we obtain

$$
\begin{equation*}
L^{2} X=(\theta-c)(X-\eta(X) \xi) \tag{3.14}
\end{equation*}
$$

Further, if we take account of (3.10), then the other structure equations (2.16) $\sim(2.21)$ reformed as
(3.15) $\quad\left(\nabla_{X} A\right) Y-\left(\nabla_{Y} A\right) X$

$$
=k\{\eta(Y) L X-\eta(X) L Y\}+c\{\eta(X) \phi Y-\eta(Y) \phi X-2 g(\phi X, Y) \xi\}
$$

$$
\begin{equation*}
\left(\nabla_{X} K\right) Y-\left(\nabla_{Y} K\right) X=t(X) L Y-t(Y) L X \tag{3.16}
\end{equation*}
$$

$$
\begin{equation*}
\left(\nabla_{X} L\right) Y-\left(\nabla_{Y} L\right) X=k\{\eta(X) A Y-\eta(Y) A X\}-t(X) K Y+t(Y) K X \tag{3.17}
\end{equation*}
$$

$$
\begin{equation*}
L A X-A L X=(X k) \xi-\eta(X) \nabla k+k(\phi A X+A \phi X) \tag{3.19}
\end{equation*}
$$

where we have used (2.5).
Putting $X=\xi$ in (3.18) and using (3.10), we find

$$
\begin{equation*}
K A \xi=k A \xi+k(t-t(\xi) \xi) \tag{3.20}
\end{equation*}
$$

Replacing $X$ by $\xi$ in (3.19) and using (2.5), (3.10) and (3.12), we get

$$
\begin{equation*}
K U=(\xi k) \xi-\nabla k+k U \tag{3.21}
\end{equation*}
$$

If we apply (3.20) by $\phi$ and make use of (2.22) (3.11) and (3.12), then we find

$$
\begin{equation*}
K U=k(t \phi-U) \tag{3.22}
\end{equation*}
$$

which together with (3.21) yields

$$
\begin{equation*}
\nabla k=(\xi k) \xi+k(-t \phi+2 U) \tag{3.23}
\end{equation*}
$$

If we transform (3.19) by $\phi$ and take account of (2.22), (3.11) and the last equation, then we obtain
$\phi A L X-K A X=-k\{t-t(\xi) \xi\} \eta(X)+2 \mu \eta(X) W+2 g(A \xi, X) \xi-A X-\phi A \phi X\}$,
which connected to (3.18) gives

$$
\begin{equation*}
\phi A L=-L A \phi . \tag{3.24}
\end{equation*}
$$

Since $\theta$ is constant if $n>2$, differentiating (3.14) covariantly, we find

$$
\left(\nabla_{X} L^{2}\right) Y=(c-\theta)\{\eta(Y) \phi A X+g(\phi A X, Y) \xi\}
$$

or, using (3.13) and (3.17), it is verified that (see, [13])

$$
\begin{aligned}
2\left(\nabla_{X} L\right) L Y=( & -c)\{2 t(X) \phi Y-\eta(Y)(\phi A+A \phi) X+g((A \phi-\phi A) X, Y) \xi \\
& -\eta(X)(\phi A-A \phi) Y\}-k\{\eta(Y)(A L+L A) X \\
& -g((A L+L A) X, Y) \xi-\eta(X)(L A-A L) Y\}
\end{aligned}
$$

which together with (3.10) and (3.22) yields

$$
\begin{align*}
& (\theta-c)(A \phi-\phi A) X+\left(k^{2}+\theta-c\right)(u(X) \xi+\eta(X) U)  \tag{3.25}\\
& \quad+k\{(A L+L A) X+k\{-t(\phi X) \xi+\eta(X) \phi \circ t\}=0
\end{align*}
$$

where $u(X)=g(U, X)$ for any vector $X$.
In the following we consider the case where (2.22) with $\mu=0$, that is $A \xi=\alpha \xi$. Differentiating this covariantly and using (2.5), we find

$$
\left(\nabla_{X} A\right) \xi=-A \phi A X+\alpha \phi A X+(X \alpha) \xi
$$

which together with (3.10) and (3.15) gives

$$
\begin{equation*}
-2 A \phi A X+\alpha(\phi A+A \phi) X+2 c \phi X=\eta(X) \nabla \alpha-(X \alpha) \xi \tag{3.26}
\end{equation*}
$$

If we put $X=\xi$ in this and using (2.22) with $\mu=0$, then we find

$$
\begin{equation*}
\nabla \alpha=(\xi \alpha) \xi \tag{3.27}
\end{equation*}
$$

Differentiating the second equation of (3.10) covariantly along $M$, and using (2.5), we find $\nabla_{X} m=-(X k) \xi+k \phi A X$, from which taking the skew-symmetric part and making use of (2.20) with $l=0$,

$$
L A X-A L X-k(\phi A X+A \phi X)=(X k) \xi-\eta(X) \nabla k
$$

Since $A \xi=\alpha \xi$ was assumed, we then have

$$
\begin{equation*}
\nabla k=(\xi k) \xi \tag{3.28}
\end{equation*}
$$

because of (3.10). From the last two equations, it follows that

$$
\begin{equation*}
L A-A L=k(\phi A+A \phi) . \tag{3.29}
\end{equation*}
$$

If we put $X=\xi$ in (3.18) and remember (2.22) with $\mu=0$ and (3.10), then we get

$$
\begin{equation*}
k(t(X)-t(\xi) \eta(X))=0 \tag{3.30}
\end{equation*}
$$

Since we have $A \xi=\alpha \xi$, differentiating (3.28) covariantly, and taking the skewsymmetric part obtained, we get

$$
\begin{equation*}
(\xi k)(A \phi+\phi A)=0 \tag{3.31}
\end{equation*}
$$

From this and (3.27) we can write (3.26) as $\alpha\left(A^{2} \phi+c \phi\right)=0$. By the properties of the almost contact metric structure, it follows that

$$
\xi k\left\{h_{(2)}-\alpha^{2}+2 c(n-1)\right\}=0,
$$

which implies $\xi k=0$ if $c>0$.

## 4. Commuting Structure Jacobi Operators

We will continue our arguments under the same hypotheses $d t=2 \theta \omega$ for a scalar $\theta(\neq 2 c)$ as those stated in section 3. Further suppose, throughout this paper, that $R_{\xi} \phi=\phi R_{\xi}$, which means that the eigenspace of the structure Jacobi operator $R_{\xi}$ is invariant by the structure operator $\phi$. Then (2.31) reformed as

$$
\begin{equation*}
\alpha(\phi A X-A \phi X)=g(A \xi, X) U+g(U, X) A \xi+2 k L X \tag{4.1}
\end{equation*}
$$

by virtue of (3.10).
Transforming this by $A$, and taking the trace obtained, we have $g\left(A^{2} \xi, U\right)=0$ because of (3.25), which together with (2.22) yields

$$
\begin{equation*}
\mu g(A W, U)=0 \tag{4.2}
\end{equation*}
$$

Applying (4.1) by $L$ and using (2.25), (3.11) and (3.19), we find

$$
\begin{align*}
\alpha\{A K X-k \eta(X) A \xi-\phi A L X\}+g(L U, X) A \xi & +g(K U, X) U  \tag{4.3}\\
& =-2 k L^{2} X
\end{align*}
$$

which together with (3.18) and (3.22) yields

$$
\begin{aligned}
& k \alpha\{t(X) \xi-\eta(X) t+g(A \xi, X) \xi-\eta(X) A \xi\} \\
& \quad+g(L U, X) A \xi-g(A \xi, X) L U-u(X) K U+g(K U, X) U=0
\end{aligned}
$$

where $u(X)=g(U, X)$ for any vector $X$. If we take the inner product with $\xi$ to this and use (3.10), then we get

$$
\begin{equation*}
k \alpha\{t(X)-t(\xi) \eta(X)+g(A \xi, X)-\alpha \eta(X)\}+\alpha g(L U, X)=0 \tag{4.4}
\end{equation*}
$$

Combining the last two equations and taking account of (2.24), we obtain

$$
\begin{equation*}
\mu(w(X) L U-g(L U, X) W)+u(X) K U-g(K U, X) U=0 \tag{4.5}
\end{equation*}
$$

where $w(X)=g(W, X)$ for any vector $X$.
In the previous paper [13] we prove the following proposition.
Proposition 4.1. Let $M$ be a real $(2 n-1)$-dimensional $(n>2)$ semi-invariant submanifold of codimension 3 in a complex space form $M_{n+1}(c), c \neq 0$. If it satisfies $d t=2 \theta \omega$ for a scalar $\theta \neq 2 c$ and $\mu=g(A \xi, W)=0$, then we have $k=0$.

Sketch of Proof. This fact was proved for $c>0$ (see, Proposition 3.5 of [13]). But, regardless of the sign of $c$ this one is established. However, only $\xi k=0$ and $\xi \alpha=0$ should be newly certified. We are now going to prove, using (4.1), that $\xi k=0$.

Now, let $\Omega_{1}$ be a set of points such that $\xi k \neq 0$ on $M$ and suppose that $\Omega_{1}$ be nonvoid. Then we have

$$
A \phi+\phi A=0, \quad L A=A L
$$

on $\Omega_{1}$ because of (3.29) and (3.31). We discuss our arguments on $\Omega_{1}$.
From (4.1) we have $\alpha \phi A+k L=0$ because of $\mu=0$, which together with (3.11) gives $\alpha A Y+k K Y=\left(\alpha^{2}+k^{2}\right) \eta(Y) \xi$. Differentiating this covariantly along $\Omega_{1}$ and using (3.27) and (3.28), we find

$$
\begin{aligned}
(X \alpha) A Y & +\alpha\left(\nabla_{X} A\right) Y+(\xi k) \eta(X) K Y+k\left(\nabla_{X} K\right) Y \\
& =2(\alpha(\xi \alpha)+k(\xi k)) \eta(X) \eta(Y)+\left(\alpha^{2}+k^{2}\right)\{g(\phi A X, Y) \xi+\eta(Y) \phi A X\}
\end{aligned}
$$

from which, taking the skew-symmetric part and making use of (3.16), we obtain

$$
\begin{aligned}
(X \alpha) A Y-(Y \alpha) A X & +\alpha\left(\left(\nabla_{X} A\right) Y-\left(\nabla_{Y} A\right) X\right)+k(t(X) L Y-t(Y) L X) \\
& =\left(\alpha^{2}+k^{2}\right)(\eta(Y) \phi A X-\eta(X) \phi A Y)
\end{aligned}
$$

If we take the inner product $\xi$ to this and remember (3.10), (3.15) and the fact that $\mu=0$, then we have $c \alpha=0$, which together with (4.1) yields $k L=0$, a contradiction because of (3.14). In the same way we see from (3.27) that $\xi \alpha=0$. This completes the proof.

We set $\Omega=\{p \in M: k(p) \neq 0\}$, and suppose that $\Omega$ is nonempty. In the rest of this paper, we discuss our arguments on the open subset $\Omega$ of $M$. So, by Proposition 4.1 we see that $\mu \neq 0$ on $\Omega$.

We notice here that the following fact :
Remark 4.2. $\alpha \neq 0$ on $\Omega$.
In fact, if not, then we have $\alpha=0$ on this subset. We discuss our arguments on such a place. So (4.1) reformed as

$$
\begin{equation*}
\mu(w(X) U+u(X) W)+2 k L X=0 \tag{4.6}
\end{equation*}
$$

because of (2.22) with $\alpha=0$. Putting $X=U$ or $W$ in this we have respectively

$$
\begin{equation*}
L U=-\frac{\mu \beta}{2 k} W, \quad L W=-\frac{\mu}{2 k} U \tag{4.7}
\end{equation*}
$$

by virtue of (2.24) with $\alpha=0$. Using this and (3.14), we can write (4.3) as

$$
-\frac{\beta^{2}}{2 k} w(X) W+g(K U, X) U=-2 k(\theta-c)(X-\eta(X) \xi)
$$

Taking the inner product with $W$ to this, we obtain $\beta^{2}=4 k^{2}(\theta-c)$.

On the other hand, combining (4.6) and (4.7) to (3.14) we also have $\beta^{2}=$ $4(n-1) k^{2}(\theta-c)$, which implies $(n-2)(\theta-c) k=0$, a contradiction because of our assumption and Lemma 3.1. Thus, $\alpha=0$ is not impossible on $\Omega$.

Now, putting $X=U$ in (4.4) and remembering Remark 4.2, we find $k t(U)+$ $g(L U, U)=0$.

By the way, replacing $X$ by $U$ in (4.1) and using (2.22) and (2.25), we find

$$
\alpha(\phi A U+\mu A W)=\mu^{2} A \xi+2 k L U
$$

If we take the inner product with $U$ and make use of (4.2) and Proposition 4.1, then we obtain $g(L U, U)=0$ and hence $t(U)=0$.

By putting $X=U$ in (4.5), we then have

$$
\begin{equation*}
K U=\tau U \tag{4.8}
\end{equation*}
$$

where $\tau$ is given by $\tau \mu^{2}=g(K U, U)$ by virtue of Proposition 4.1. Applying this by $\phi$ and using (3.12), we find

$$
\begin{equation*}
L U=\tau \mu W \tag{4.9}
\end{equation*}
$$

It is, using (4.8) and (4.9), seen that

$$
\begin{equation*}
\tau^{2}=\theta-c \tag{4.10}
\end{equation*}
$$

because of (3.13).
Remark 4.3. $\Omega=\emptyset$ if $\theta=c$.
Since we have $\theta=c$, then (3.14) gives $L=0$ and thus $K X=k \eta(X) \xi$ by virtue of (3.11). Hence, (3.17) reformed as

$$
k\{\eta(X) A Y-\eta(Y) A X+\eta(X) t(Y) \xi-t(X) \eta(Y) \xi\}=0,
$$

which shows $k(t(X)+g(A \xi, X)-\sigma \eta(X))=0$, where we have put $\sigma=\alpha+t(\xi)$. Thus, the last two equations imply

$$
A X=\eta(X) A \xi+g(A \xi, X) \xi-\alpha \eta(X) \xi
$$

Since $U$ is orthogonal to $\xi$ and $W$, it is clear that $A U=0$ and $A W=\mu \xi$.
If we put $X=\mu W$ in (4.1) and remember (2.23) and the fact that $L=0$, then we obtain $\mu^{2} U=0$ and hence $A \xi=\alpha \xi$. Owing to Lemma 3.1, we conclude that $k=0$ and thus $\Omega=\emptyset$.

By Remark 4.3, we may only consider the case where $\tau \neq 0$ on $\Omega$. Because of (3.22) and (4.8) we have

$$
\begin{equation*}
t(\phi X)=\left(1+\frac{\tau}{k}\right) g(U, X) \tag{4.11}
\end{equation*}
$$

Therefore, by properties of the almost contact metric structure, it is clear that

$$
\begin{equation*}
t=t(\xi) \xi-\mu\left(1+\frac{\tau}{k}\right) W \tag{4.12}
\end{equation*}
$$

Using (2.22), we can write (3.20) as

$$
\mu K W=k \mu W+k(t-t(\xi) \xi)
$$

which together with (4.12) implies that

$$
\begin{equation*}
K W=-\tau W \tag{4.13}
\end{equation*}
$$

because of Proposition 4.1.
If we take account of (3.25) and (4.11), then we find

$$
\begin{equation*}
\tau^{2}(A \phi X-\phi A X)+\tau(\tau-k)(u(X) \xi+\eta(X) U)+k(A L X+L A X)=0 \tag{4.14}
\end{equation*}
$$

From (2.15) the Ricci tensor $S$ of type $(1,1)$ of $M$ is given by

$$
S X=c\{(2 n+1) X-3 \eta(X) \xi\}+h A X-A^{2} X+k K X-K^{2} X-L^{2} X
$$

by virtue of (3.10).
By the way, we see, using (3.12)~(3.14), that

$$
\begin{equation*}
K^{2} X=(\theta-c)(X-\eta(X) \xi)+k^{2} \eta(X) \xi \tag{4.15}
\end{equation*}
$$

Substituting this and (3.14) into the last equation and using (4.10), we obtain (4.16) $S X=\{c(2 n+1)-2(\theta-c)\} X+\left(2(\theta-c)-k^{2}-3 c\right) \eta(X) \xi+h A X-A^{2} X+k K X$, which connected to (3.10) yields

$$
\begin{equation*}
S \xi=2 c(n-1) \xi+h A \xi-A^{2} \xi \tag{4.17}
\end{equation*}
$$

Differentiating (4.8) covariantly along $\Omega$, we find

$$
\left(\nabla_{X} K\right) U+K \nabla_{X} U=\tau \nabla_{X} U
$$

which together with (3.16) and (4.9) yields

$$
\begin{align*}
\mu \tau(t(X) w(Y)- & t(Y) w(X))+g\left(K \nabla_{X} U, Y\right)-g\left(K \nabla_{Y} U, X\right)  \tag{4.18}\\
& =\tau\left\{g\left(\nabla_{X} U, Y\right)-g\left(\nabla_{Y} U, X\right)\right\}
\end{align*}
$$

By the way, because of (2.22) and (2.24), we can write (2.29) as

$$
\begin{equation*}
\nabla_{\xi} U=3 \phi A U+\alpha \mu W-\mu^{2} \xi+\phi \nabla \alpha . \tag{4.19}
\end{equation*}
$$

Replacing $X$ by $\xi$ in (4.18) and taking account of the last two relationships, we find

$$
\begin{align*}
\mu^{2}(\tau-k) \xi & +\mu \tau(t(\xi)-2 \alpha) W+\mu(k-\tau) A W  \tag{4.20}\\
& +3(L A U-\tau \phi A U)=\tau \phi \nabla \alpha-L \nabla \alpha
\end{align*}
$$

where we have used the first equation of (2.26).
In a direct consequence of (3.12) and (4.8), we obtain

$$
\begin{equation*}
\mu L W=\tau U \tag{4.21}
\end{equation*}
$$

because of $\mu \neq 0$ on $\Omega$.
In the same way as above, we see from (4.13)

$$
\begin{align*}
\frac{\tau}{\mu}\{t(X) u(Y) & -t(Y) u(X)\}+g\left(K \nabla_{X} W, Y\right)-g\left(K \nabla_{Y} W, X\right)  \tag{4.22}\\
& =\tau\left\{g\left(\nabla_{Y} W, X\right)-g\left(\nabla_{X} W, Y\right)\right\}
\end{align*}
$$

In the next place, from (2.22) and (2.25) we have $\phi U=-\mu W$. Differentiating this covariantly and using (2.6), we find

$$
g(A U, X) \xi-\phi \nabla_{X} U=(X \mu) W+\mu \nabla_{X} W
$$

Putting $X=\xi$ in this and making use of (2.29), we get

$$
\begin{equation*}
\mu \nabla_{\xi} W=3 A U-\alpha U+\nabla \alpha-(\xi \alpha) \xi-(\xi \mu) W \tag{4.23}
\end{equation*}
$$

which enables us to obtain

$$
\begin{equation*}
W \alpha=\xi \mu \tag{4.24}
\end{equation*}
$$

## 5. Ricci Tensors of Semi-invariant Submanifolds

We will continue our arguments under the same hypotheses $R_{\xi} \phi=\phi R_{\xi}$ and $d t=2 \theta \omega$ for a scalar $\theta(\neq 2 c)$ as those in section 3. Further, we assume that $S \xi=g(S \xi, \xi) \xi$ is satisfied on a semi-invariant submanifold of codimension 3 in $M_{n+1}(c), c \neq 0$. Then we have from (4.17)

$$
\begin{equation*}
A^{2} \xi=h A \xi+(\beta-h \alpha) \xi \tag{5.1}
\end{equation*}
$$

From this, and (2.22) and (2.24) we see that

$$
\begin{equation*}
A W=\mu \xi+(h-\alpha) W \tag{5.2}
\end{equation*}
$$

In the next place, differentiating (5.2) covariantly along $\Omega$, we find

$$
\begin{equation*}
\left(\nabla_{X} A\right) W+A \nabla_{X} W=(X \mu) \xi+\mu \nabla_{X} \xi+X(h-\alpha) W+(h-\alpha) \nabla_{X} W \tag{5.3}
\end{equation*}
$$

By taking the inner product with $W$ to this and using (2.26) and (5.2), we obtain

$$
\begin{equation*}
g\left(\left(\nabla_{X} A\right) W, W\right)=-2 g(A U, X)+X h-X \alpha \tag{5.4}
\end{equation*}
$$

because $W$ is a unit orthogonal vector to $\xi$.
Applying (5.3) by $\xi$ and using (2.26), we also obtain

$$
\begin{equation*}
\mu g\left(\left(\nabla_{X} A\right) W, \xi\right)=(h-2 \alpha) g(A U, X)+\mu(X \mu) \tag{5.5}
\end{equation*}
$$

which connected to (3.15) gives

$$
\begin{equation*}
\mu\left(\nabla_{\xi} A\right) W=(h-2 \alpha) A U+\mu \nabla \mu-k \mu L W-c U \tag{5.6}
\end{equation*}
$$

or, using (3.10), (3.15) and (5.5),

$$
\begin{equation*}
\mu\left(\nabla_{W} A\right) \xi=(h-2 \alpha) A U-2 c U+\mu \nabla \mu \tag{5.7}
\end{equation*}
$$

Putting $X=\xi$ in (5.4) and taking account of (5.5), we have

$$
\begin{equation*}
W \mu=\xi h-\xi \alpha . \tag{5.8}
\end{equation*}
$$

Replacing $X$ by $\xi$ in (5.3) and using (5.6), we find

$$
\begin{gathered}
(h-2 \alpha) A U-k \mu L W-c U+\mu \nabla \mu+\mu\left(A \nabla_{\xi} W-(h-\alpha) \nabla_{\xi} W\right) \\
=\mu(\xi \mu) \xi+\mu^{2} U+\mu(\xi h-\xi \alpha) W
\end{gathered}
$$

Substituting (4.23) and (4.24) into this and making use of (4.21), we find

$$
\begin{align*}
3 A^{2} U-2 h A U+ & (\alpha h-\beta-c-k \tau) U+A \nabla \alpha+\frac{1}{2} \nabla \beta-h \nabla \alpha  \tag{5.9}\\
& =2 \mu(W \alpha) \xi+(2 \alpha-h)(\xi \alpha) \xi+\mu(\xi h) W
\end{align*}
$$

On the other hand, if we put $X=\mu W$ in (4.1) and take account of (2.23), (2.24) and (5.2), then we find $\alpha A U+(\beta-h \alpha+2 k \tau) U=0$, which shows

$$
\begin{equation*}
A U=\lambda U \tag{5.10}
\end{equation*}
$$

where the function $\lambda$ is defined, using Remark 4.2, by

$$
\begin{equation*}
\alpha \lambda=h \alpha-\beta-2 k \tau \tag{5.11}
\end{equation*}
$$

Differentiating (5.10) covariantly along $\Omega$, we find

$$
\left(\nabla_{X} A\right) U+A \nabla_{X} U=(X \lambda) U+\lambda \nabla_{X} U
$$

If we take the skew-symmetric part of this, then we get

$$
\begin{aligned}
& \mu(k \tau-c)(\eta(Y) w(X)-\eta(X) w(Y))+g\left(A \nabla_{X} U, Y\right)-g\left(A \nabla_{Y} U, X\right) \\
& \quad=(X \lambda) u(Y)-(Y \lambda) u(X)+\lambda\left(g\left(\nabla_{X} U, Y\right)-g\left(\nabla_{Y} U, X\right)\right)
\end{aligned}
$$

where we have used (2.22), (2.25), (3.15) and (4.9). Replacing $X$ by $U$ in this and using (5.10), we get

$$
\begin{equation*}
A \nabla_{U} U-\lambda \nabla_{U} U=(U \lambda) U-\mu^{2} \nabla \lambda \tag{5.12}
\end{equation*}
$$

Taking the inner product with $W$ to this and remembering (5.2), we obtain

$$
\begin{equation*}
\mu g\left(\xi, \nabla_{U} U\right)+\mu^{2}(W \lambda)+(h-\alpha-\lambda) g\left(W, \nabla_{U} U\right)=0 \tag{5.13}
\end{equation*}
$$

By the way, from $K U=\tau U$, we have

$$
\begin{equation*}
\left(\nabla_{X} K\right) U+K \nabla_{X} U=\tau \nabla_{X} U \tag{5.14}
\end{equation*}
$$

which implies that $g\left(\left(\nabla_{X} K\right) U, U\right)=0$. Because of (3.16), (4.9) and the last relationship give $\left(\nabla_{U} K\right) U=0$, which connected to (4.13) and (5.14) yields $g\left(W, \nabla_{U} U\right)=0$. Thus, (5.13) reformed as

$$
\mu g\left(\xi, \nabla_{U} U\right)+\mu^{2}(W \lambda)=0
$$

However, the first term of this vanishes identically because of (2.26) and (5.2), which shows $\mu(W \lambda)=0$ and hence

$$
\begin{equation*}
W \lambda=0 . \tag{5.15}
\end{equation*}
$$

In the same way, we verify, using (2.26) and (5.2), that

$$
\begin{equation*}
\xi \lambda=0 \tag{5.16}
\end{equation*}
$$

Now, differentiating (2.25) covariantly and using (2.5), we find

$$
\left(\nabla_{X} A\right) \xi+A \phi A X=(X \alpha) \xi+\alpha \phi A X+(X \mu) W+\mu \nabla_{X} W
$$

If we put $X=\mu W$ in this and use (5.2), (5.7) and (5.10), then we find
(5.17) $\mu^{2} \nabla_{W} W-\mu \nabla \mu=\left(2 h \lambda-3 \alpha \lambda+\alpha^{2}-\alpha h-2 c\right) U-\mu(W \alpha) \xi-\mu(W \mu) W$.

Lemma 5.1. If $M$ satisfies (4.1), (5.2) and $d t=2 \theta \omega$ for a scalar $\theta(\neq 2 c)$, then we have on $\Omega$

$$
\begin{equation*}
\nabla k=(k-\tau) U \tag{5.18}
\end{equation*}
$$

Proof. Using (3.21) and (4.8) we have

$$
X k=(\xi k) \eta(X)+(k-\tau) u(X)
$$

for any vector field $X$. Differentiating this covariantly along $\Omega$ and taking the skew-symmetric part obtained, we find

$$
\begin{align*}
\eta(Y) X(\xi k) & -\eta(X) Y(\xi k)+(\xi k)\{\eta(X) u(Y)-\eta(Y) u(X)  \tag{5.19}\\
& +g(\phi A X, Y)-g(\phi A Y, X)\}+(k-\tau) d u(X, Y)=0
\end{align*}
$$

where we have used (2.5).
Now, we take an orthonormal frame filed $\left\{e_{0}=\xi, e_{1}=W, e_{2}, \cdots, e_{n-1}, e_{n}=\right.$ $\left.\phi e_{1}=\frac{1}{\mu} U, e_{n+1}=\phi e_{2}, \cdots, e_{2 n-2}=\phi e_{n-1}\right\}$ of $M$. Taking the trace of (2.27), we obtain

$$
\sum_{i=0}^{2 n-2} g\left(\phi \nabla_{e_{i}} U, e_{i}\right)=\xi \alpha-\xi h
$$

Putting $X=\phi e_{i}$ and $Y=e_{i}$ in (5.19) and summing up for $i=1,2, \cdots, n-1$, we have

$$
(k-\tau) \sum_{i=0}^{2 n-2} d u\left(\phi e_{i}, e_{i}\right)=\xi k(\alpha-h)
$$

where we have used $(2.22),(2.25),(5.2)$ and (5.10). Combining the last two relationships, we get

$$
\begin{equation*}
(h-\alpha) \xi k=(k-\tau)(\xi h-\xi \alpha) . \tag{5.20}
\end{equation*}
$$

By the way, if we put $X=\mu W$ in (3.25) and take account of (2.22), (3.10) and (5.2), we obtain

$$
(\theta-c)\{A U-(h-\alpha) U\}+k \tau\{A U+(h-\alpha) U\}=0
$$

which connected to (4.9) and (5.10) yields

$$
\begin{equation*}
\lambda(k+\tau)+(h-\alpha)(k-\tau)=0 \tag{5.21}
\end{equation*}
$$

From this we have

$$
(h-\alpha+\lambda) \nabla k+(k-\tau)(\nabla h-\nabla \alpha)+(k+\tau) \nabla \lambda=0 .
$$

So we have $(h-\alpha+\lambda) \xi k+(k-\tau)(\xi h-\xi \alpha)=0$ with the aid of (5.16). From this and (5.20) we see that $(2 h-2 \alpha+\lambda) \xi k=0$.

If $\xi k \neq 0$ on $\Omega$, then we have $\lambda=2(\alpha-h)$, which together with (5.21) implies that $(h-\alpha)(k+3 \tau)=0$ on this subset. We discuss our arguments on such a place. So we have $h-\alpha=0$ from the last equation and hence $\lambda=0$. Consequently we have $\mu^{2}+2 k \tau=0$ by virtue of (2.24) and (5.11). Differentiation with respect to $\xi$ gives $\mu(\xi \mu)+\tau(\xi k)=0$.

However, if we take the inner product with $U$ to (5.7) and remember (2.24), (5.10) and the fact that $h-\alpha=0$ and $\lambda=0$, then we have $\mu \nabla \mu=\left(\mu^{2}+k \tau+c\right) U$
and consequently $\xi \mu=0$. Hence we have $\tau(\xi k)=0$, a contradiction. Thus, we have (5.18). This completes the proof.

Lemma 5.2. Under the same hypotheses as those stated in Lemma 5.1, we have $k-\tau \neq 0$ on $\Omega$.
Proof. If not, then we have $k-\tau=0$ on an open subset of $\Omega$. We discuss our argument on such a place. Then we have $\lambda=0$ because of (5.21) and Remark 4.3. So (5.10) and (5.11) turn out respectively to

$$
\begin{gather*}
A U=0  \tag{5.22}\\
\beta-h \alpha+2 \tau^{2}=0 \tag{5.23}
\end{gather*}
$$

We also have from (4.11) $t=t(\xi) \xi-2 \phi U$, which shows $t(Y)=t(\xi) \eta(Y)-$ $2 g(\phi U, Y)$ for any vector $Y$. Differentiating this covariantly and using (2.5), (2.6) and (5.22), we find

$$
\left(\nabla_{X} t\right) Y=X(t(\xi)) \eta(Y)+t(\xi) g(\phi A X, Y)-2 g\left(\phi \nabla_{X} U, Y\right)
$$

from which, taking the skew-symmetric part with respect to $X$ and $Y$ and using (3.1),

$$
\begin{aligned}
2 \theta g(\phi X, Y) & =X(t(\xi)) \eta(Y)-Y(t(\xi)) \eta(X)+t(\xi)\{g(\phi A X, Y)-g(\phi A Y, X)\} \\
& +2\left\{g\left(\phi \nabla_{Y} U, X\right)-g\left(\phi \nabla_{X} U, Y\right)\right\}
\end{aligned}
$$

On the other hand, we verify from (2.27) that

$$
\begin{aligned}
& g\left(\phi \nabla_{X} U, Y\right)-g\left(\phi \nabla_{Y} U, X\right)+(X \alpha) \eta(Y)-(Y \alpha) \eta(X) \\
& \quad=-2 c g(\phi X, Y)-2 g(A \phi A X, Y)+\alpha(g(\phi A X, Y)-g(\phi A Y, X))
\end{aligned}
$$

Combining the last two equations, it follows that

$$
\begin{aligned}
& 2(\theta-2 c) g(\phi X, Y)+t(\xi)\{g(\phi A X, Y)-g(\phi A Y, X)\} \\
& \quad=X(t(\xi)) \eta(Y)-Y(t(\xi)) \eta(X)+2\{2 g(A \phi A X, Y)+\alpha(g(\phi A X, Y) \\
& \quad-g(\phi A Y, X))+(X \alpha) \eta(Y)-(Y \alpha) \eta(X)\}
\end{aligned}
$$

Putting $Y=\xi$ in this and remembering (5.22), we find

$$
\begin{equation*}
X(t(\xi))+2(X \alpha)=\{\xi(t(\xi))+2 \xi \alpha\} \eta(X)+(t(\xi)+2 \alpha) u(X) \tag{5.24}
\end{equation*}
$$

Substituting this into the last equation, we obtain

$$
\begin{aligned}
2(\theta-2 c) g(\phi X, Y) & =(t(\xi)+2 \alpha)(u(X) \eta(Y)-u(Y) \eta(X) \\
& +g(\phi A X, Y)-g(\phi A Y, X))+4 g(A \phi A X, Y)
\end{aligned}
$$

If we put $X=\mu W$ in this and take account of (2.23), (5.2) and (5.22), then we get

$$
\begin{equation*}
2(\theta-2 c)=(t(\xi)+2 \alpha)(h-\alpha) \tag{5.25}
\end{equation*}
$$

In the next step, differentiating (4.13) covariantly, we find

$$
\left(\nabla_{X} K\right) W+K \nabla_{X} W+\tau \nabla_{X} W=0
$$

from which, taking the skew-symmetric part and using (3.16) and (4.9),

$$
\begin{align*}
\frac{\tau}{\mu}(t(Y) u(X) & -t(X) u(Y))+g\left(K \nabla_{X} W, Y\right)-g\left(K \nabla_{Y} W, X\right)  \tag{5.26}\\
& =\tau\left\{\left(\nabla_{Y} W\right) X-\left(\nabla_{X} W\right) Y\right\}
\end{align*}
$$

If we put $X=\xi$ in this and make use of (2.26), (4.23) and (5.22), then, we find

$$
\begin{equation*}
K \nabla \alpha+\tau \nabla \alpha=2 \tau(\xi \alpha) \xi+\tau(2 \alpha+t(\xi)) U \tag{5.27}
\end{equation*}
$$

Replacing $X$ by $W$ in (5.26) and making use of (5.17), we have

$$
\mu(K \nabla \mu+\tau \nabla \mu)=2 \tau\left(\mu^{2}-\alpha^{2}+h \alpha+2 c\right) U+2 \mu \tau(W \alpha) \xi
$$

If we take the inner product with $U$ to this and take account of (4.8), then we obtain $\mu(U \mu)=\left(\mu^{2}-\alpha^{2}+h \alpha+2 c\right) \mu^{2}$, which together with (2.24) and (5.23) gives

$$
\begin{equation*}
\mu(U \mu)=2\left(\mu^{2}+\tau^{2}+c\right) \mu^{2} \tag{5.28}
\end{equation*}
$$

On the other hand, differentiating (5.22) covariantly with respect to $\xi$, we find $\left(\nabla_{\xi} A\right) U+A \nabla_{\xi} U=0$, which together with (4.19) (5.1) and (5.22) implies that

$$
\left(\nabla_{\xi} A\right) U+(\alpha h-\beta) A \xi-\alpha(\beta-h \alpha) \xi+A \phi \nabla \alpha=0
$$

Applying by $\phi$, we have

$$
\begin{equation*}
\phi\left(\nabla_{\xi} A\right) U+(\alpha h-\beta) U+\phi A \phi \nabla \alpha=0 \tag{5.29}
\end{equation*}
$$

Since we see from (3.15)

$$
\left(\nabla_{U} A\right) \xi-\left(\nabla_{\xi} A\right) U=\mu\left(\tau^{2}+c\right) W
$$

by virtue of (2.25), (3.10) and (4.9), it follows that

$$
\begin{equation*}
\phi\left(\nabla_{U} A\right) \xi=\phi\left(\nabla_{\xi} A\right) U+\left(\tau^{2}+c\right) U \tag{5.30}
\end{equation*}
$$

We also have from (2.27)

$$
\nabla_{X} U+g\left(A^{2} \xi, X\right) \xi=\phi\left(\nabla_{X} A\right) \xi+\phi A \phi A X+\alpha A X
$$

which connected to (5.22) gives $\nabla_{U} U=\phi\left(\nabla_{U} A\right) \xi$. Thus, (5.30) reformed as

$$
\nabla_{U} U=\phi\left(\nabla_{\xi} A\right) U+\left(\tau^{2}+c\right) U
$$

Combining this to (5.29) and using (5.23), it follows that

$$
\begin{equation*}
\nabla_{U} U=\left(c-\tau^{2}\right) U-\phi A \phi \nabla \alpha \tag{5.31}
\end{equation*}
$$

If we apply by $A$ and take account of (5.12) with $\lambda=0$ and (5.22), then we have $A \phi A \phi \nabla \alpha=0$.

Now, taking the inner product with $U$ to (5.30) and making use of (2.22) $\sim$ (2.25) and (5.2), we obtain

$$
\begin{equation*}
\mu(U \mu)=\left(c-\tau^{2}\right) \mu^{2}+(h-\alpha) U \alpha \tag{5.32}
\end{equation*}
$$

However, applying (5.27) by $U$ and using (4.8), we find $2 U \alpha=(t(\xi)+2 \alpha) \mu^{2}$, which connected to $(5.25)$ gives $(h-\alpha) U \alpha=(\theta-2 c) \mu^{2}$. Substituting (5.28) and this into (5.32), we find $2 \mu^{2}+3 c+3 \tau^{2}=\theta$, which together with (4.10) gives $\mu^{2}+\tau^{2}+c=0$ and consequently $\mu$ is constant. Thus, we see, using (2.24) and (5.23), that

$$
\begin{equation*}
\alpha(h-\alpha)=\tau^{2}-c . \tag{5.33}
\end{equation*}
$$

Therefore, $\alpha(h-\alpha)=$ const. Differentiation gives

$$
(h-\alpha) \nabla \alpha+\alpha(\nabla h-\nabla \alpha)=0
$$

which connected to (5.8) implies that $(h-\alpha) \xi \alpha=0$, where we have used $\mu=$ const. Accordingly we have $\xi \alpha=0$ by virtue of (5.33) and the fact that $\theta-2 c \neq 0$.

Using (4.10) and (5.33), we can write (5.25) as

$$
2(\theta-2 c) \alpha=(\theta-2 c)(t(\xi)+2 \alpha)
$$

Thus, it follows that $t(\xi)=0$ provided that $\theta-2 c \neq 0$. Hence, (5.24) turns out to be $\nabla \alpha=\alpha U$, which implies $d u=0$. Therefore, it is clear that $\nabla_{U} U=0$ because of $\mu=$ const, which connected to (5.31) yields $\left(c-\tau^{2}\right) U=\alpha \phi A \phi U$. So we have $c-\tau^{2}=\alpha(h-\alpha)$, where we have used (2.23), (2.25) and (5.2). From this and (5.33) it follows that $\theta-2 c=0$, a contradiction. Hence, Lemma 5.2 is proved.
Lemma 5.3. Under the same hypotheses as those in Lemma 5.1, we have

$$
\begin{equation*}
\nabla \alpha=(h-3 \lambda) U . \tag{5.34}
\end{equation*}
$$

Proof. Because of Lemma 5.1 and Lemma 5.2, we can write (5.19) as $d u(X, Y)=0$, that is, $g\left(\nabla_{X} U, Y\right)-g\left(\nabla_{Y} U, X\right)=0$. Putting $X=\xi$ in this, and using (2.26) and (4.19), we find

$$
3 \phi A U+\alpha A \xi-\beta \xi+\phi \nabla \alpha+\mu A W=0
$$

which together with $(2.22),(2.25),(5.2)$ and (5.10) implies that

$$
\phi \nabla \alpha+(h-3 \lambda) \mu W=0 .
$$

Thus, it follows that

$$
\begin{equation*}
\nabla \alpha=(\xi \alpha) \xi+(h-3 \lambda) U . \tag{5.35}
\end{equation*}
$$

We are now going to prove that $\xi \alpha=0$.
Differentiation (5.21) with respect to $\xi$ gives $\xi h-\xi \alpha=0$ with the aid of (5.16), Lemma 5.1 and Lemma 5.2.

Using (5.10), (5.35) and this fact, we can write (5.9) as

$$
\begin{equation*}
\frac{1}{2} \nabla \beta+\left(2 h \lambda+\alpha h-\beta-c-k \tau-h^{2}\right) U=\{2 \mu(W \alpha)+\alpha(\xi \alpha)\} \xi \tag{5.36}
\end{equation*}
$$

Since we have $W \mu=0$ because of (5.8), if we take the inner product $\xi$ to the last equation and take account of (2.24), then we obtain $\alpha(W \alpha)=0$ and hence $W \alpha=0$ by virtue of Remark 4.2.

Differentiating (5.11) with respect to $\xi$ and making use of (5.16), Lemma 5.1 and the fact that $\xi h-\xi \alpha=0$, we find

$$
\xi \beta=(h+\alpha-\lambda) \xi \alpha .
$$

On the other hand, if we differentiate (2.24) with respect to $\xi$ and remember $W \alpha=0$ and (4.24), then we have $\xi \beta=2 \alpha(\xi \alpha)$. From this and the last relationship we get $(\lambda+\alpha-h) \xi \alpha=0$.

Now, if $\xi \alpha \neq 0$ on $\Omega$, the we have $\lambda=h-\alpha$ on this subset. We discuss our arguments on this subset. Then (5.21) yields $\lambda k=0$ and hence $\lambda=0$ and $h-\alpha=0$. So (5.35) and (5.36) are reduced respectively to

$$
\nabla \alpha=(\xi \alpha) \xi+\alpha U, \quad \frac{1}{2} \nabla \beta=\alpha(\xi \alpha) \xi+(\beta+k \tau+c) U
$$

We also have from (5.11) $\beta=\alpha^{2}-2 k \tau$, which together with (5.18) implies that

$$
\frac{1}{2} \nabla \beta=\alpha \nabla \alpha-\tau(k-\tau) U
$$

Combining above equations, it follows that $\tau^{2}=c$, that is, $\theta-2 c=0$, a contradiction. This completes the proof of Lemma 5.3.

## 6. Proof of Main Theorem

First of all, we will prove the following lemma.
Lemma 6.1. Let $M$ be a real $(2 n-1)$-dimensional semi-invariant submanifold of codimension 3 in a complex space form $M_{n+1}(c), c \neq 0$ satisfying $d t=2 \theta \omega$
for a scalar $\theta \neq 2 c$. Suppose that $M$ satisfies $R_{\xi} \phi=\phi R_{\xi}$ and at the same time $S \xi=g(S \xi, \xi) \xi$. Then the distinguished normal is parallel in the normal bundle, where $S$ denotes the Ricci tensor of $M$.
Proof. Because of (5.19), Lemma 5.1 and Lemma 5.2, we have $d u=0$. So we have from (5.14)

$$
g\left(K \nabla_{X} U, Y\right)-g\left(K \nabla_{Y} U, X\right)+\mu \tau\{t(X) w(Y)-t(Y) w(X)\}=0
$$

where we have used (3.16) and (4.9). Putting $X=\xi$ in this and using (2.25), (2.26), (4.19) and (5.10), we find

$$
K(3 \lambda \mu W+\alpha A \xi-\beta \xi+\phi \nabla \alpha)+k \mu A W+\mu \tau t(\xi) W=0
$$

which connected to (2.22), (3.10), (3.12), (4.13), (5.2) and (5.34) gives

$$
\begin{equation*}
\tau t(\xi)+(h-\alpha)(k+\tau)=0 \tag{6.1}
\end{equation*}
$$

or, using (5.21)

$$
\begin{equation*}
\tau(k-\tau) t(\xi)=\lambda(k+\tau)^{2} \tag{6.2}
\end{equation*}
$$

On the other hand, differentiating (4.12) covariantly along $\Omega$, and taking account of (2.5), (2.6), (5.10) and (5.18), we get

$$
\begin{aligned}
\left(\nabla_{X} t\right) Y=X(t(\xi)) \eta(Y) & +t(\xi) g(\phi A X, Y)+\frac{\tau}{k^{2}}(k-\tau) \mu u(X) w(Y) \\
& -\left(1+\frac{\tau}{k}\right)\left\{\lambda u(X) \eta(Y)-g\left(\phi \nabla_{X} U, Y\right)+t\left(\nabla_{X} Y\right)\right.
\end{aligned}
$$

from which taking the skew-symmetric part and using (2.25) and (3.1),

$$
\begin{align*}
& 2 \theta g(\phi X, Y)+\frac{\tau}{k^{2}}(k-\tau) \mu(u(Y) w(X)-u(X) w(Y))  \tag{6.3}\\
& \quad=X(t(\xi)) \eta(Y)-Y(t(\xi)) \eta(X)+t(\xi)\{g(\phi A X, Y)-g(\phi A Y, X)\} \\
& \quad-\left(1+\frac{\tau}{k}\right)\left\{\lambda(u(X) \eta(Y)-u(Y) \eta(X))-g\left(\phi \nabla_{X} U, Y\right)+g\left(\phi \nabla_{Y} U, X\right)\right\}
\end{align*}
$$

By the way, we have from (2.27) and (3.15)

$$
\begin{aligned}
& g\left(\phi \nabla_{X} U, Y\right)-g\left(\phi \nabla_{Y} U, X\right)+(h+\lambda-3 \alpha)(u(X) \eta(Y)-u(Y) \eta(X)) \\
& \quad=2 c g(\phi X, Y)-2 g(A \phi A X, Y)+\alpha(g(\phi A X, Y)-g(\phi A Y, X))
\end{aligned}
$$

where we have used (3.10), (5.10) and (5.34).
Combining the last two equations, we obtain

$$
\begin{array}{r}
2 \theta g(\phi X, Y)+\frac{\tau}{k^{2}}(k-\tau) \mu(u(Y) w(X)-u(X) w(Y))-t(\xi)(g(\phi A X, Y)-g(\phi A Y, X)) \\
=X(t(\xi)) \eta(Y)-Y(t(\xi)) \eta(X)+\left(1+\frac{\tau}{k}\right)\{2 c g(\phi X, Y)+(h-3 \lambda)(u(X) \eta(Y) \\
-u(Y) \eta(X))-2 g(A \phi A X, Y)+\alpha(g(\phi A X, Y)-g(\phi A Y, X))\}
\end{array}
$$

Putting $Y=\xi$ in this and making use of (2.5) and (5.10), we find

$$
\begin{equation*}
X(t(\xi))=\xi(t(\xi)) \eta(X)+\left\{t(\xi)+\left(1+\frac{\tau}{k}\right)(\lambda+\alpha-h)\right\} u(X) \tag{6.4}
\end{equation*}
$$

which together with (6.1) yields

$$
X(t(\xi))=\xi(t(\xi)) \eta(X)+\left(1+\frac{\tau}{k}\right)(\lambda+t(\xi)) u(X)
$$

Substituting this into the last equation and using (5.21), we find

$$
\begin{align*}
& 2 \theta g(\phi X, Y)+\frac{\tau}{k^{2}} \mu(k-\tau)(w(X) u(Y)-w(Y) u(X))  \tag{6.5}\\
& \quad=\left(1+\frac{\tau}{k}\right)\{(h-2 \lambda+t(\xi))(u(X) \eta(Y)-u(Y) \eta(X)) \\
& +2 c g(\phi X, Y)+2 g(A \phi A X, Y)+(h+t(\xi))(g(\phi A X, Y)-g(\phi A Y, X))\}
\end{align*}
$$

Differentiating (6.1) covariantly and remembering (5.18), we find

$$
\tau X(t(\xi))=(\alpha-h)(k-\tau) u(X)+(k+\tau)(X \alpha-X h)
$$

which connected to (5.21) yields

$$
\begin{equation*}
\tau X(t(\xi))=(k+\tau)(X \alpha-X h+\lambda u(X)) \tag{6.6}
\end{equation*}
$$

By the way, we see, using (5.20), Lemma 5.1 and Lemma 5.2, that $\xi h-\xi \alpha=0$. Thus, from the last equation, it follows that $\xi(t(\xi))=0$ and hence (6.4) can be written as

$$
X(t(\xi))=\left\{t(\xi)+\left(1+\frac{\tau}{k}\right)(\lambda-h+\alpha)\right\} u(X)
$$

which together with (6.1) gives

$$
\tau X(t(\xi))=\left\{\left(k+2 \tau+\frac{\tau^{2}}{k}\right)(\alpha-h)+\tau \lambda\left(1+\frac{\tau}{k}\right)\right\} u(X)
$$

Combining this to (6.6), we get

$$
(k+\tau)(\nabla \alpha-\nabla h+\lambda U)=\left(1+\frac{\tau}{k}\right)\{(k+\tau)(\alpha-h)+\tau \lambda\} U,
$$

which together with (5.21) gives

$$
\begin{equation*}
k(\nabla \alpha-\nabla h)=2 \tau(\lambda+\alpha-h) U \tag{6.7}
\end{equation*}
$$

where we have used $k+\tau \neq 0$.
If we differentiate (6.2) and take account of Lemma 5.1 and itself, we find

$$
\lambda(k+\tau)^{2} U+\tau(k-\tau) \nabla t(\xi)=(k+\tau)^{2} \nabla \lambda+2 \lambda\left(k^{2}-\tau^{2}\right) U
$$

which together with (6.6), and Lemma 5.1 and Lemma 5.2 implies that $(k+\tau) \nabla \lambda=$ $(k-\tau)(\nabla \alpha-\nabla h)+2 \tau \lambda U$, or using (5.21) and (6.7),

$$
\begin{equation*}
(k+\tau) \nabla \lambda=6 \tau \lambda U \tag{6.8}
\end{equation*}
$$

Now, if we put $X=U$ and $Y=W$ in (6.5) and using (2.23), (5.2) and (5.10), then we find

$$
2 \theta+\frac{\tau}{k^{2}}(k-\tau) \mu^{2}=\left(1+\frac{\tau}{k}\right)\{2 c-2 \lambda(h-\alpha)+(t(\xi)+h)(\lambda+h-\alpha)\}
$$

By the way, it is seen, using (5.11) and (5.21), that $(k-\tau)^{2} \mu^{2}+2 k\left(\alpha \lambda+\tau k-\tau^{2}\right)=$ 0 . Thus, the last equation can be written as

$$
\begin{aligned}
\theta k(k-\tau) & -\tau \alpha \lambda(k-\tau)-\tau^{2}(k-\tau)^{2} \\
& =c\left(k^{2}-\tau^{2}\right)+\lambda^{2}(k+\tau)^{2}-\tau \lambda(k+\tau)(t(\xi)+h)
\end{aligned}
$$

If we multiply $k-\tau$ to this and take account of (4.10), (5.21) and (6.2), then we obtain

$$
\begin{equation*}
\lambda^{2}(k+\tau)^{2}+2 \tau \alpha \lambda(k-\tau)+(k-\tau)^{2}\left(\tau^{2}-c\right)=0 \tag{6.9}
\end{equation*}
$$

Differentiating this covariantly and using (5.18) and (6.8), we find

$$
\tau(k-\tau) \nabla(\alpha \lambda)+6 \tau \lambda^{2}(k+\tau) U=\tau \lambda\{2 \lambda(k+\tau)+\alpha(k-\tau)\} U
$$

which implies

$$
(k-\tau) \nabla(\alpha \lambda)=\lambda\{\alpha(k-\tau)-4 \lambda(k+\tau)\} U
$$

From this and (5.21) and (5.34), we have

$$
\alpha(k-\tau) \nabla \lambda+6 \tau \lambda^{2} U=0
$$

which together with (6.8) yields $\lambda\{\alpha(k-\tau)+\lambda(k+\tau)\}=0$. Thus, it follows that $\alpha(k-\tau)+\lambda(k+\tau)=0$ by virtue of (6.9), which connected to (5.21) gives $h=2 \alpha$. Further, we have from the last relationship $(k+\tau) \nabla \lambda+(k-\tau) \nabla \alpha=0$, which together with (5.34) and (6.8) gives $6 \tau \lambda+(k-\tau)(2 \alpha-3 \lambda)=0$. Thus, it follows that $(8 \tau-5 k) \lambda=0$, and hence $5 k=8 \tau$ because of (6.9).
So, we see, using (5.18), that $k$ is a constant on $\Omega$ and hence $U=0$, a contradiction. This completes the proof.

According to Lemma 6.1 we can prove the following :
Lemma 6.2. Under the same hypotheses as those in Lemma 6.1, we have $A^{(2)}=$ $A^{(3)}=0$ provided that $\bar{r}-2(n-1) c \leq 0$.
Remark 6.3. This lemma proved in [13] for the case where $\theta-2 c<0$ and $c>0$. But, we need the condition $\bar{r}-2 c(n-1) \leq 0$ for the case where $c<0$, where $\bar{r}$ is the scalar curvature of $M$. So we introduce the outline of the proof.

The sketch of Proof. By Lemma 2.2 and Lemma 6.1, we have $k=0$ and hence $m=0$ on $M$ because of (3.10). Thus, (3.15)~(3.20) turn out to be

$$
\begin{equation*}
\left(\nabla_{X} A\right) Y-\left(\nabla_{Y} A\right) X=c\{\eta(X) \phi Y-\eta(Y) \phi X-2 g(\phi X, Y) \xi\} \tag{6.10}
\end{equation*}
$$

$$
\begin{equation*}
\left(\nabla_{X} K\right) Y-\left(\nabla_{Y} K\right) X=t(X) L Y-t(Y) L X \tag{6.11}
\end{equation*}
$$

$$
\begin{equation*}
\left(\nabla_{X} L\right) Y-\left(\nabla_{Y} L\right) X=0 \tag{6.12}
\end{equation*}
$$

$$
\begin{equation*}
K A-A K=0, \quad L A-A L=0 \tag{6.13}
\end{equation*}
$$

Since we have $K \xi=0$ because of (3.10), differentiating $K \xi=0$ covariantly along $M$ and using (2.5) and (3.12), we find

$$
\begin{equation*}
\left(\nabla_{X} K\right) \xi=-L A X \tag{6.14}
\end{equation*}
$$

If we take account of Lemma 5.2 and (4.10), then (4.15) reformed as

$$
\begin{equation*}
K^{2} X=\tau^{\prime}(X-\eta(X) \xi) \tag{6.15}
\end{equation*}
$$

where $\tau^{\prime}=\theta-c$.
Differentiating (6.15) covariantly along $M$ and using (2.5), we find

$$
\left(\nabla_{X} K\right) K Y+K\left(\nabla_{X} K\right) Y=-\tau^{\prime}\{\eta(Y) \phi A X+g(\phi A X, Y) \xi\}
$$

Using the quite same method as those used to (3.26) from (3.14), we can derive from the last equation the following :

$$
\begin{align*}
& 2\left(\nabla_{X} K\right) K Y=\tau^{\prime}\{-2 t(X) \phi Y+\eta(X)(\phi A-A \phi) Y  \tag{6.16}\\
& \quad+g((\phi A-A \phi) X, Y) \xi+\eta(Y)(\phi A+A \phi) X\}
\end{align*}
$$

where we have used (3.13) and (6.11).
By the way, if we take the trace of $K$ in (6.11), we have $\sum_{i} \nabla_{e_{i}} K e_{i}=L t$ because of (3.10). If we use this fact to (6.16), we obtain

$$
K L t=\tau^{\prime}(\phi t+U)
$$

where we have used (2.5), which together with (3.11) gives $\tau^{\prime} U=0$ and consequently $U=0$ on $M$, that is $A \xi=\alpha \xi$ because of (2.25). Therefore, if we take account of Lemma 5.3 and (3.26), then we obtain

$$
\begin{equation*}
\tau^{\prime}(A \phi-\phi A)=0 \tag{6.17}
\end{equation*}
$$

In the following, we assume that $\tau^{\prime} \neq 0$ on $M$. Then, from this and (6.10) we can verify the following (cf. [6], [16]) :

$$
\begin{equation*}
A^{2}=\alpha A+c(I-\eta \otimes \xi) \tag{6.18}
\end{equation*}
$$

$$
\begin{equation*}
\left(\nabla_{X} A\right) Y=-c(\eta(Y) \phi X+g(\phi X, Y) \xi) \tag{6.19}
\end{equation*}
$$

Using (6.17), we can write (6.16) as

$$
K\left(\nabla_{X} K\right) Y=\tau^{\prime}\{-t(X) \phi Y+\eta(X) \phi A Y+g(\phi A X, Y) \xi\}
$$

If we transform this by $K$ and make use of (3.12), (6.11), (6.14) and (6.15), then we have

$$
\begin{equation*}
\left(\nabla_{X} K\right) Y=t(X) L Y-\eta(X) A L X-\eta(Y) L A X-g(A L X, Y) \xi \tag{6.20}
\end{equation*}
$$

Differentiating (3.12) covariantly along $M$ and using (2.6) and the last equation, we find

$$
\begin{equation*}
\left(\nabla_{X} L\right) Y=-t(X) K Y+\eta(X) A K Y+\eta(Y) A K X+g(A K X, Y) \xi \tag{6.21}
\end{equation*}
$$

If we take the trace of $L$ in this and remember (3.20) and the fact that $\operatorname{Tr} A^{(2)}=$ $\operatorname{Tr} A^{(3)}=0$ and $A \xi=\alpha \xi$, we verify that

$$
\begin{equation*}
\operatorname{Tr}\left(A A^{(2)}\right)=0 \tag{6.22}
\end{equation*}
$$

which connected to (6.18) gives

$$
\begin{equation*}
\operatorname{Tr}\left(A^{2} A^{(2)}\right)=0 \tag{6.23}
\end{equation*}
$$

For the orthonormal frame field $\left\{e_{0}, e_{1}, \cdots, e_{2 n-2}\right\}$ already selected, we write $g\left(e_{j}, e_{i}\right)=g_{j i}, g\left(\phi e_{i}, e_{j}\right)=\phi_{i j},\left(g_{j i}\right)^{-1}=g^{j i}, g\left(A e_{i}, e_{j}\right)=A_{i j}$ and $\nabla_{e_{i}} X=$ $\left(\nabla_{i} X^{h}\right) e_{h}$ for any vector $X=X^{i} e_{i}$. And the Einstein summation convention will be used. Then (6.20) can be written as

$$
\nabla_{k} K_{j i}=t_{k} L_{j i}-\xi_{k} A_{j r} L_{i}^{r}-\xi_{i} A_{k r} L_{j}^{r}-\xi_{j} A_{i r} L_{k}^{r}
$$

Differentiating this covariantly along $M$ and taking account of (2.5), (3.20), (6.18), (6.19) and itself, we find

$$
\begin{aligned}
\nabla_{h} \nabla_{k} K_{j i} & =\left(\nabla_{h} t_{k}\right) L_{j i}-c\left(K_{j h} \xi_{k} \xi_{i}+K_{k i} \xi_{j} \xi_{h}+2 K_{i h} \xi_{j} \xi_{k}\right)+B_{h k j i} \\
& -\alpha\left(\xi_{j} \xi_{h} A_{k r} K_{i}{ }^{r}+\xi_{k} \xi_{i} A_{j r} K_{h}^{r}+2 \xi_{j} \xi_{k} A_{i r} K_{h}{ }^{r}\right) \\
& +\left(A_{h s} \phi_{j}^{s}\right)\left(A_{k r} L_{i}^{r}\right)+\left(A_{h s} \phi_{k}^{s}\right)\left(A_{i r} L_{j}^{r}\right)+\left(A_{h s} \phi_{i}^{s}\right)\left(A_{j r} L_{k}^{r}\right),
\end{aligned}
$$

where $B_{h k j i}$ is a certain tensor with $B_{h k j i}=B_{k h j i}$, from which, taking the skewsymmetric part with respect to $h$ and $k$, and making use of $(3.1),(6.17)$ and the Ricci identity for $K_{j i}$ (for detail, see (4.17) of [13]),

$$
\begin{align*}
& R_{k h j r} K_{i}^{r}+R_{k h i r} K_{j}^{r}  \tag{6.24}\\
& =2 \theta \phi_{h k} L_{j i}-c\left\{\xi_{j}\left(\xi_{k} K_{i h}-\xi_{h} K_{i k}\right)+\xi_{i}\left(\xi_{k} K_{j h}-\xi_{h} K_{j k}\right)\right\} \\
& -\alpha\left\{\xi_{j}\left(\xi_{k} A_{i r} K_{h}^{r}-\xi_{h} A_{i r} K_{k}^{r}\right)+\xi_{i}\left(\xi_{k} A_{j r} K_{h}^{r}-\xi_{h} A_{j r} K_{k}^{r}\right)\right\} \\
& +\left(A_{h s} \phi_{j}^{s}\right)\left(A_{k r} L_{i}^{r}\right)-\left(A_{k s} \phi^{s}\right)\left(A_{h r} L_{i}^{r}\right)+\left(A_{h s} \phi_{i}{ }^{s}\right)\left(A_{k r} L_{j}^{r}\right) \\
& -\left(A_{k s} \phi_{i}^{s}\right)\left(A_{h r} L_{j}^{r}\right)+2\left(A_{h s} \phi_{k}^{s}\right)\left(A_{j r} L_{i}^{r}\right) .
\end{align*}
$$

Multiplying (6.24) with $\phi^{k h}$ and summing for $k$ and $h$, and using (3.1), (3.11), (3.12), (6.17) and (6.18), we find

$$
\begin{equation*}
\phi^{k h}\left(R_{k h j r} K_{i}^{r}+R_{k h i r} K_{j}^{r}\right)=4\{c-(n-1) \theta\} L_{j i}+2(h+\alpha) A_{j r} L_{i}^{r} . \tag{6.25}
\end{equation*}
$$

On the other hand, from (2.15) we see, using (3.12), (6.15), (6.17) and (6.18), that

$$
\phi^{k h}\left(R_{k h i r} K_{j}^{r}+R_{k h j r} K_{i}^{r}\right)=4\{2 \theta-(2 n+3) c\} L_{j i}-4 \alpha A_{j r} L_{i}^{r},
$$

which connected to (6.25) implies that (for detail, see (4.19) of [13])

$$
(h+3 \alpha) A L=2\{(n+1) \theta-2(n+2) c\} L
$$

which connected to (3.14) yields

$$
(h+3 \alpha)(A X-\alpha \eta(X) \xi)=2\{(n+1) \theta-2(n+2) c\}(X-\eta(X) \xi)
$$

Taking the trace of (6.26), we have

$$
(h+3 \alpha)(h-\alpha)=4(n-1)\{(n+1) \theta-2 c(n+2)\}
$$

which implies

$$
\begin{equation*}
(h-\alpha)^{2}+4 \alpha(h-\alpha)=\delta \tag{6.26}
\end{equation*}
$$

where we put

$$
\begin{equation*}
\delta=4(n-1)\{(n+1) \theta-2 c(n+2)\} \tag{6.27}
\end{equation*}
$$

In the same way as above, by using properties of $A$ and (2.15), (6.22), (6.23) and (6.25), we obtain (for detail, see (4.21) of [13])

$$
\left(4 \theta-12 c-h_{(2)}-3 \alpha^{2}\right) A K=\{4 c \alpha-(\theta-2 c)(h-\alpha)\} K,
$$

which connected to (6.15) yields

$$
\begin{equation*}
\left(4 \theta-12 c-h_{(2)}-3 \alpha^{2}\right)(h-\alpha)=2(n-1)\{4 c \alpha-(\theta-2 c)(h-\alpha)\} \tag{6.28}
\end{equation*}
$$

Since we have $h_{(2)}=\alpha h+2 c(n-1)$ from (6.18), combining (6.27) to (6.28), we obtain

$$
\begin{equation*}
(\theta-3 c)(h-\alpha)=2(n-1) \alpha(\theta-2 c) . \tag{6.29}
\end{equation*}
$$

On the other hand, from (4.16) we verify that the scalar curvature $\bar{r}$ of $M$ is given by

$$
\bar{r}=4 c\left(n^{2}-1\right)-4(n-1) \tau^{\prime}+h^{2}-h_{(2)}
$$

which connected to (6.18) gives

$$
\begin{equation*}
\bar{r}=2 c(n-1)(2 n+1)-4(n-1) \tau^{\prime}+h(h-\alpha) . \tag{6.30}
\end{equation*}
$$

By the way, it is seen, using (4.10), that $\theta-3 c \neq 0$ for $c<0$. We also have $\theta-3 c \neq 0$ for $c>0$,

In fact, if not, then we have $\theta-3 c=0$ on this open subset. Thus, it follows, using (6.29), that

$$
\begin{equation*}
\alpha=0, \quad \tau^{\prime}=2 c \tag{6.31}
\end{equation*}
$$

Hence $h^{2}=4(n-1)^{2} c$ on the set by virtue of (6.26) and (6.27). Using this fact and (6.31), we can write (6.30) as $\bar{r}=2 c(n-1)(4 n-5)$, a contradiction because of $\bar{r}-2 c(n-1) \leq 0$ and $c>0$. Therefore $\theta-3 c \neq 0$ is proved. Thus, we can write (6.29) as

$$
h-\alpha=\frac{2(n-1)}{\theta-3 c}(\theta-2 c) \alpha
$$

Substituting this into (6.26), we obtain

$$
4(n-1)(\theta-2 c)\{(n+1) \theta-2(n+2) c\} \alpha^{2}=\delta(\theta-3 c)^{2}
$$

which together (6.27) gives

$$
\begin{equation*}
\delta\left\{(\theta-3 c)^{2}-(\theta-2 c) \alpha^{2}\right\}=0 \tag{6.32}
\end{equation*}
$$

We notice here that $\delta \neq 0$ if $c<0$. We also see that $\delta \neq 0$ for $c>0$. In fact, if not, then we have $\delta=0$. Then we have by (6.27)

$$
\theta-c=\frac{n+3}{n+1} c .
$$

Using this fact and (6.26), we can write (6.30) as

$$
\bar{r}-2(n-1) c=\frac{4(n-1)}{n+1}\left(n^{2}-3\right) c+\varepsilon^{2}
$$

where $\varepsilon^{2}=0$ or $12 \alpha^{2}$, a contradiction because $c>0$ and $\bar{r}-2(n-1) c \leq 0$ was assumed. Therefore (6.32) turns out to be

$$
\begin{equation*}
(\theta-3 c)^{2}=(\theta-2 c) \alpha^{2} \tag{6.33}
\end{equation*}
$$

Accordingly, if we combine (6.29) to (6.33), then we obtain $\alpha(h-\alpha)=2(n-$ $1)(\theta-3 c)$, which together with (6.26) yields

$$
h(h-\alpha)=2(n-1)(2 n-1) \tau^{\prime}-4 n(n-1) c
$$

Using this, we can write (6.30) as

$$
\bar{r}-2 c(n-1)=2(n-1)(2 n-3) \tau^{\prime}
$$

Therefore we have $\tau^{\prime}=0$ if $\bar{r}-2 c(n-1) \leq 0$. This completes the proof of Lemma 6.2.

Let $N_{0}(p)=\left\{v \in T_{p}^{\perp}(M): A_{v}=0\right\}$ and $H_{0}(p)$ be the maximal J-invariant subspace of $N_{0}(p)$. As a consequence of Lemma 6.2 , we have $A^{(2)}=A^{(3)}=0$, the orthogonal complement of $H_{0}(p)$ is invariant under parallel translation with respect to the normal connection because of $\nabla^{\perp} C=0$. Thus, by the reduction theorem for $P_{n+1} \mathbb{C}([19])$ and $H_{n+1} \mathbb{C}([9],[11])$, there exists a totally geodesic complex space form including $M$ in $M_{n+1}(c)$, we conclude that
Theorem 6.4. Let $M$ be a real $(2 n-1)$-dimensional $(n>2)$ semi-invariant submanifold of codimension 3 in a complex space form $M_{n+1}(c), c \neq 0$ with constant holomorphic sectional curvature $4 c$ such that the third fundamental form $t$ satisfies $d t=2 \theta \omega$ for a nonzero scalar $\theta-2 c \neq 0$ and $\bar{r}-2 c(n-1) \leq 0$, where $\omega(X, Y)=$ $g(\phi X, Y)$ for any vector fields $X$ and $Y$ on $M$. If $M$ satisfies $R_{\xi} \phi=\phi R_{\xi}$ and at the same time $S \xi=g(S \xi, \xi) \xi$, then $M$ is a real hypersurface in a complex space form $M_{n}(c), c \neq 0$.

Since we have $\nabla^{\perp} C=0$, we can write (2.16) and (4.1) as

$$
\begin{gathered}
\left(\nabla_{X} A\right) Y-\left(\nabla_{Y} A\right) X=c\{\eta(X) \phi Y-\eta(Y) \phi X-2 g(\phi X, Y) \xi\} \\
\alpha(\phi A X-A \phi X)-g(A \xi, X) U-g(U, X) A \xi=0
\end{gathered}
$$

respectively. Making use of (2.5), (2.6) and the above equations, it is prove in [16] that $g(U, U)=0$, that is, $M$ is a Hopf real hypersurface. Hence, we conclude that $\alpha(A \phi-\phi A)=0$ and hence $A \xi=0$ or $A \phi=\phi A$. Since $M$ is a Hopf hypersurface, $A \xi=0$ means that $\alpha=0$. Here, we note that the case $\alpha=0$ correspond to the case of tube of radius $\pi / 4$ in $P_{n} \mathbb{C}([5],[6])$. But, in the case $H_{n} \mathbb{C}$ it is known that $\alpha$ never vanishes for Hopf hypersurfaces (cf.[3]) Thus, owing to Theorem 6.4, Theorem O and Theorem MR, we have

Main Theorem. Let $M$ be a real $(2 n-1)$-dimensional $(n>2)$ semi-invariant submanifold of codimension 3 in a complex space form $M_{n+1}(c), c \neq 0$ with constant holomorphic sectional curvature $4 c$ such that the Ricci tensor $S$ satisfies $S \xi=g(S \xi, \xi) \xi$ and the third fundamental form $t$ satisfies $d t=2 \theta \omega$ for a scalar $\theta-2 c(\neq 0)$ and satisfies $\bar{r}-2 c(n-1) \leq 0$, where $S$ and $\bar{r}$ denote the Ricci tensor and the scalar curvature of $M$, respectively. Then $R_{\xi} \phi=\phi R_{\xi}$ holds on $M$ if and only if $M$ is locally congruent to one of the following hypersurfaces :
(I) in case that $M_{n}(c)=P_{n} \mathbb{C}$,
$\left(A_{1}\right)$ a geodesic hypersphere of radius $r$, where $0<r<\pi / 2$ and $r \neq \pi / 4$,
$\left(A_{2}\right)$ a tube of radius $r$ over a totally geodesic $P_{k} \mathbb{C}$ for some $k \in\{1, \ldots, n-2\}$, where $0<r<\pi / 2$ and $r \neq \pi / 4$,
$(T)$ a tube of radius $\pi / 4$ over a certain complex submanifold in $P_{n} \mathbb{C}$;
(II) in case that $M_{n}(c)=H_{n} \mathbb{C}$,
$\left(A_{0}\right)$ a horosphere,
$\left(A_{1}\right)$ a geodesic hypersphere or a tube over a complex hyperbolic hyperplane $H_{n-1} \mathbb{C}$,
$\left(A_{2}\right)$ a tube over a totally geodesic $H_{k} \mathbb{C}$ for some $k \in\{1, \ldots, n-2\}$.
Remark 6.5. Because of (4.10), it is clear that $\theta \neq 0$ if $c>0$, and $\theta-2 c \neq 0$ if $c<0$.

Acknowledgements. The authors with to express their sincere thanks to the referee who gave us valuable suggestions and comments to improve the paper.

## References

[1] A. Bejancu, CR-submanifolds of a Kähler manifold I, Proc. Amer. Math. Soc., $\mathbf{6 9}$ (1978), 135-142.
[2] J. Berndt, Real hypersurfaces with constant principal curvatures in a complex hyperbolic space, J. Reine Angew. Math., 395(1989), 132-141.
[3] J. Berndt and H. Tamaru, Cohomogeneity one actions on non compact symmetric space of rank one, Trans. Amer. Math. Soc., 359(2007), 3425-3438.
[4] D. E. Blair, G. D. Ludden and K. Yano, Semi-invariant immersion, Kodai Math. Sem. Rep., 27(1976), 313-319.
[5] T. E. Cecil and P. J. Ryan, Focal sets and real hypersurfaces in complex projective space, Trans. Amer. Math. Soc., 269(1982), 481-499.
[6] T. E. Cecil and P. J. Ryan, Geometry of Hypersurfaces, Springer(2015).
[7] J. T. Cho and U-H. Ki, Real hypersurfaces of a complex projective space in terms of the Jacobi operators, Acta Math. Hungar, 80(1998), 155-167.
[8] J. T. Cho and U-H. Ki, Real hypersurfaces in complex space forms with Reeb-flows symmetric Jacobi operator, Canadian Math. Bull., 51(2008), 359-371.
[9] J. Erbacher, Reduction of the codimension of an isometric immersion, J. Differential Geom., 5(1971), 333-340.
[10] J. I. Her, U-H. Ki and S. -B. Lee, Semi-invariant submanifolds of codimension 3 of a complex projective space in terms of the Jacobi operator, Bull. Korean Math. Soc., 42(2005), 93-119.
[11] S. Kawamoto, Codimension reduction for real submanifolds of a complex hyperbolic space, Rev. Mat. Univ. Complut. Madrid., 7(1994), 119-128.
[12] U-H. Ki and H. Song, Jacobi operators on a semi-invariant submanifolds of codimension 3 in a complex projective space, Nihonkai Math J., 14(2003), 1-16.
[13] U-H. Ki, H. Song and R. Takagi, Submanifolds of codimension 3 admitting almost contact metric structure in a complex projective space, Nihonkai Math J., 11(2000), 57-86.
[14] M. Kimura, Real hypersurfaces and complex submanifolds in complex projective space, Trans. Amer. Math. Soc., 296(1986), 137-149.
[15] S. Montiel and A. Romero, On some real hypersurfaces of a complex hyperbolic space, Geometriae Dedicata., 20(1986), 245-261.
[16] R. Niebergall and P. J. Ryan, Real hypersurfaces in complex space form, in Tight and Taut submanifolds, Cambridge University Press : (1998(T. E. Cecil and S. -S. Chern eds.)), 233-305.
[17] M. Okumura, On some real hypersurfaces of a complex projective space, Trans. Amer. Math. Soc., 212(1973), 355-364.
[18] M. Okumura, Normal curvature and real submanifold of the complex projective space, Geom. Dedicata., 7(1978), 509-517.
[19] M. Okumura, Codimension reduction problem for real submanifolds of complex projective space, Colloz. Math. Soc. Jámos Bolyai, 56(1989), 574-585.
[20] H. Song, Some differential-geometric properties of $R$-spaces, Tsukuba J. Math., 25(2001), 279-298.
[21] R. Takagi, On homogeneous real hypersurfaces in a complex projective space, Osaka J. Math., 19(1973), 495-506.
[22] R. Takagi, Real hypersurfaces in a complex projective space with constant principal curvatures I, II, J. Math. Soc. Japan, 27(1975), 43-53, 507-516.
[23] Y. Tashiro, Relations between the theory of almost complex spaces and that of almost contact spaces (in Japanese), Sũgaku, 16(1964), 34-61.
[24] K. Yano, and U-H. Ki, On ( $f, g, u, v, w, \lambda, \mu, \nu)$-structure satisfying $\lambda^{2}+\mu^{2}+\nu^{2}=1$, Kodai Math. Sem. Rep., 56(1978), 574-585.
[25] K. Yano and M. Kon, CR submanifolds of Kaehlerian and Sasakian manifolds, Birkhäuser(1983).


[^0]:    * Corresponding author.

    Received November 12, 2019; revised February 22, 2021; accepted February 24, 2021. 2010 Mathematics Subject Classification: 53B25, 53C40, 53C42.
    Key words and phrases: semi-invariant submanifold, distinguished normal, complex space form, structure Jacobi operator, Ricci tensor, Hopf hypersurfaces.

