• 제목/요약/키워드: multiple positive solution

검색결과 55건 처리시간 0.025초

STUDIES ON BOUNDARY VALUE PROBLEMS FOR BILATERAL DIFFERENCE SYSTEMS WITH ONE-DIMENSIONAL LAPLACIANS

  • YANG, XIAOHUI;LIU, YUJI
    • Korean Journal of Mathematics
    • /
    • 제23권4호
    • /
    • pp.665-732
    • /
    • 2015
  • Existence results for multiple positive solutions of two classes of boundary value problems for bilateral difference systems are established by using a fixed point theorem under convenient assumptions. It is the purpose of this paper to show that the approach to get positive solutions of boundary value problems of finite difference equations by using multi-fixed-point theorems can be extended to treat the bilateral difference systems with one-dimensional Laplacians. As an application, the sufficient conditions are established for finding multiple positive homoclinic solutions of a bilateral difference system. The methods used in this paper may be useful for numerical simulation. An example is presented to illustrate the main theorems. Further studies are proposed at the end of the paper.

ON THE EXISTENCE OF POSITIVE SOLUTION FOR A CLASS OF NONLINEAR ELLIPTIC SYSTEM WITH MULTIPLE PARAMETERS AND SINGULAR WEIGHTS

  • Rasouli, S.H.
    • 대한수학회논문집
    • /
    • 제27권3호
    • /
    • pp.557-564
    • /
    • 2012
  • This study concerns the existence of positive solution for the following nonlinear system $$\{-div(|x|^{-ap}|{\nabla}u|^{p-2}{\nabla}u)=|x|^{-(a+1)p+c_1}({\alpha}_1f(v)+{\beta}_1h(u)),x{\in}{\Omega},\\-div(|x|^{-bq}|{\nabla}v|q^{-2}{\nabla}v)=|x|^{-(b+1)q+c_2}({\alpha}_2g(u)+{\beta}_2k(v)),x{\in}{\Omega},\\u=v=0,x{\in}{\partial}{\Omega}$$, where ${\Omega}$ is a bounded smooth domain of $\mathbb{R}^N$ with $0{\in}{\Omega}$, 1 < $p,q$ < N, $0{{\leq}}a<\frac{N-p}{p}$, $0{{\leq}}b<\frac{N-q}{q}$ and $c_1$, $c_2$, ${\alpha}_1$, ${\alpha}_2$, ${\beta}_1$, ${\beta}_2$ are positive parameters. Here $f,g,h,k$ : $[0,{\infty}){\rightarrow}[0,{\infty})$ are nondecresing continuous functions and $$\lim_{s{\rightarrow}{\infty}}\frac{f(Ag(s)^{\frac{1}{q-1}})}{s^{p-1}}=0$$ for every A > 0. We discuss the existence of positive solution when $f,g,h$ and $k$ satisfy certain additional conditions. We use the method of sub-super solutions to establish our results.

EXISTENCE OF MULTIPLE POSITIVE SOLUTIONS FOR A SCHRÖDINGER-TYPE SINGULAR FALLING ZERO PROBLEM

  • Eunkyung Ko
    • East Asian mathematical journal
    • /
    • 제39권3호
    • /
    • pp.355-367
    • /
    • 2023
  • Extending [14], we establish the existence of multiple positive solutions for a Schrödinger-type singular elliptic equation: $$\{{-{\Delta}u+V(x)u={\lambda}{\frac{f(u)}{u^{\beta}}},\;x{\in}{\Omega}, \atop u=0,\;x{\in}{\partial}{\Omega},$$ where 0 ∈ Ω is a bounded domain in ℝN, N ≥ 1, with a smooth boundary ∂Ω, β ∈ [0, 1), f ∈ C[0, ∞), V : Ω → ℝ is a bounded function and λ is a positive parameter. In particular, when f(s) > 0 on [0, σ) and f(s) < 0 for s > σ, we establish the existence of at least three positive solutions for a certain range of λ by using the method of sub and supersolutions.

EXISTENCE OF THREE POSITIVE SOLUTIONS OF A CLASS OF BVPS FOR SINGULAR SECOND ORDER DIFFERENTIAL SYSTEMS ON THE WHOLE LINE

  • Liu, Yuji;Yang, Pinghua
    • 대한수학회지
    • /
    • 제54권2호
    • /
    • pp.359-380
    • /
    • 2017
  • This paper is concerned with a kind of boundary value problem for singular second order differential systems with Laplacian operators. Using a multiple fixed point theorem, sufficient conditions to guarantee the existence of at least three positive solutions of this kind of boundary value problem are established. An example is presented to illustrate the main results.

Multiple Unbounded Positive Solutions for the Boundary Value Problems of the Singular Fractional Differential Equations

  • Liu, Yuji;Shi, Haiping;Liu, Xingyuan
    • Kyungpook Mathematical Journal
    • /
    • 제53권2호
    • /
    • pp.257-271
    • /
    • 2013
  • In this article, we establish the existence of at least three unbounded positive solutions to a boundary-value problem of the nonlinear singular fractional differential equation. Our analysis relies on the well known fixed point theorems in the cones.

POSITIVE SOLUTION FOR A CLASS OF NONLOCAL ELLIPTIC SYSTEM WITH MULTIPLE PARAMETERS AND SINGULAR WEIGHTS

  • AFROUZI, G.A.;ZAHMATKESH, H.
    • Journal of applied mathematics & informatics
    • /
    • 제35권1_2호
    • /
    • pp.121-130
    • /
    • 2017
  • This study is concerned with the existence of positive solution for the following nonlinear elliptic system $$\{-M_1(\int_{\Omega}{\mid}x{\mid}^{-ap}{\mid}{\nabla}u{\mid}^pdx)div({\mid}x{\mid}^{-ap}{\mid}{\nabla}u{\mid}^{p-2}{\nabla}u)\\{\hfill{120}}={\mid}x{\mid}^{-(a+1)p+c_1}\({\alpha}_1A_1(x)f(v)+{\beta}_1B_1(x)h(u)\),\;x{\in}{\Omega},\\-M_2(\int_{\Omega}{\mid}x{\mid}^{-bq}{\mid}{\nabla}v{\mid}^qdx)div({\mid}x{\mid}^{-bq}{\mid}{\nabla}v{\mid}^{q-2}{\nabla}v)\\{\hfill{120}}={\mid}x{\mid}^{-(b+1)q+c_2}\({\alpha}_2A_2(x)g(u)+{\beta}_2B_2(x)k(v)\),\;x{\in}{\Omega},\\{u=v=0,\;x{\in}{\partial}{\Omega},$$ where ${\Omega}$ is a bounded smooth domain of ${\mathbb{R}}^N$ with $0{\in}{\Omega}$, 1 < p, q < N, $0{\leq}a$ < $\frac{N-p}{p}$, $0{\leq}b$ < $\frac{N-q}{q}$ and ${\alpha}_i,{\beta}_i,c_i$ are positive parameters. Here $M_i,A_i,B_i,f,g,h,k$ are continuous functions and we discuss the existence of positive solution when they satisfy certain additional conditions. Our approach is based on the sub and super solutions method.

다차원 정책분석 모형을 적용한 대학생의 저소득층 자녀 교육멘토링 참여에 미치는 요인 분석 (The Analysis of Factors Influencing College Student's Educational Mentoring Participation for low-income Children : Application of Cooper's Multiple lense)

  • 이상용
    • 수산해양교육연구
    • /
    • 제24권3호
    • /
    • pp.436-445
    • /
    • 2012
  • The study aims to analyze of factors influencing on the mentoring participation of college student for low-income children using Cooper's multiple lense. The multidimensional policy analysis model is composed of the normative dimension, structural dimension, constructive dimension, technological dimension. The results of the research are as follows. First, the education difference solution shows the meaningful positive relationship in the category of normative dimension. Second, the budget and support setup shows the meaningful positive relationship in the category of technological dimension. But other factors do not show the meaningful influence.