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Abstract. In this article, we establish the existence of at least three unbounded posi-

tive solutions to a boundary-value problem of the nonlinear singular fractional differential

equation. Our analysis relies on the well known fixed point theorems in the cones.

1. Introduction

Fractional differential equations have many applications in modeling of physical
and chemical processes and in engineering and have been of great interest recently.
In its turn, mathematical aspects of studies on fractional differential equations were
discussed by many authors, see the text books [1,2], the survey papers [3,4] and
papers [5-12] and the references therein.

The use of cone theoretic techniques in the study of the existence of solutions to
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boundary value problems has a rich and diverse history. Motivated by this reason,
in this paper, we discuss the existence of three positive solutions to the boundary
value problem of the nonlinear fractional differential equation of the form

(1.1)


Dα

0+u(t) + f(t, u(t)) = 0, t ∈ (0, 1), 1 < α < 2,[
I2−α
0+ u(t)

]′∣∣∣
t=0

= 0 ,

u(1) = 0,

where Dα
0+ (Dα for short) is the Riemann-Liouville fractional derivative of order α,

and f : (0, 1)× [0,∞) → [0,∞) is continuous, f may be singular at t = 0 or t = 1.
We obtain the existence results for two and three unbounded positive solutions

about this boundary-value problem by using the fixed point theorems in the cones.

2. Preliminary results

For the convenience of the reader, we present here the necessary definitions from
fixed point theory and fractional calculus theory. These definitions and results can
be found in the literatures [13] and [1,2].

Definition 2.1. Let X be a real Banach space. The nonempty convex closed subset
P of X is called a cone in X if ax ∈ P for all x ∈ P and a ≥ 0, x ∈ X and −x ∈ X
imply x = 0.

Definition 2.2. A map ψ : P → [0,+∞) is a nonnegative continuous concave or
convex functional map provided ψ is nonnegative, continuous and satisfies

ψ(tx+ (1− t)y) ≥ tψ(x) + (1− t)ψ(y),

or
ψ(tx+ (1− t)y) ≤ tψ(x) + (1− t)ψ(y),

for all x, y ∈ P and t ∈ [0, 1].

Definition 2.3. An operator T : X → X is completely continuous if it is continuous
and maps bounded sets into pre-compact sets.

Let ψ be a nonnegative functional on a cone P of a real Banach space X. Define
the sets by

Pr = {y ∈ P : ||y|| < r},
P (ψ; a, b) = {y ∈ P : a ≤ ψ(y), ||y|| < b},
P (ψ, d) := {x ∈ P : ψ(x) < d}.

Lemma 2.1. Let T : P c → P c be a completely continuous operator and let ψ
be a nonnegative continuous concave functional on P such that ψ(y) ≤ ||y|| for all
y ∈ P c. Suppose that there exist 0 < a < b < d ≤ c such that
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(E1) {y ∈ P (ψ; b, d)|ψ(y) > b} ̸= ∅ and ψ(Ty) > b for y ∈ P (ψ; b, d);
(E2) ||Ty|| < a for ||y|| ≤ a;
(E3) ψ(Ty) > b for y ∈ P (ψ; b, c) with ||Ty|| > d.
Then T has at least three fixed points y1, y2 and y3 such that ||y1|| < a, b < ψ(y2)

and ||y3|| > a with ψ(y3) < b.

Lemma 2.2. Suppose P is a cone in a real Banach space X, α, γ : P → I0 be two
continuous increasing functionals, θ : P → I0 be a continuous functional and there
exist positive numbers M, c > 0 such that

(i) T : P (γ, c) → P is a completely continuous operator;
(ii) θ(0) = 0 and γ(x) ≤ θ(x) ≤ α(x), ||x|| ≤Mγ(x) for all x ∈ P (γ, c);
(iii) there exist constants 0 < a < b < c such that θ(λx) ≤ λθ(x) for all

λ ∈ [0, 1] and x ∈ ∂P (θ, b);
(iv) γ(Tx) > c for all x ∈ ∂P (γ, c); θ(Tx) < b for all x ∈ ∂P (θ, b); P (α, a) ̸= ∅

and α(Tx) > a for all x ∈ ∂P (α, a).
Then T has two fixed points x1, x2 in P (γ, c) such that

α(x1) > a, θ(x1) < b < θ(x2), γ(x2 < c.

Lemma 2.3. Suppose P is a cone in a real Banach space X, α, γ : P → I0 be two
continuous increasing functionals, θ : P → I0 be a continuous functional and there
exist positive numbers M, c > 0 such that (i), (ii) and (iii) in Lemma 2.4 hold and

(iv) γ(Tx) < c for all x ∈ ∂P (γ, c); θ(Tx) > b for all x ∈ ∂P (θ, b); P (α, a) ̸= ∅
and α(Tx) < a for all x ∈ ∂P (α, a).
Then T has two fixed points x1, x2 in P (γ, c) such that

α(x1) > a, θ(x1) < b < θ(x2), γ(x2 < c.

Definition 2.4. The Riemann-Liouville fractional integral of order α > 0 of a
function f : (0,∞) → R is given by

Iα0+f(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s)ds,

provided that the right-hand side exists.

Definition 2.5. The Riemann-Liouville fractional derivative of order α > 0 of a
continuous function f : (0,∞) → R is given by

Dα
0+f(t) =

1

Γ(n− α)

dn

dtn

∫ t

0

f(s)

(t− s)α−n+1
ds,

where n − 1 < α ≤ n, provided that the right-hand side is point-wise defined on
(0,∞).
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Lemma 2.4. Let n− 1 < α ≤ n, u ∈ C0(0, 1)
∩
L1(0, 1). Then

Iα0+D
α
0+u(t) = u(t) + C1t

α−1 + C2t
α−2 + · · ·+ Cnt

α−n,

where Ci ∈ R, i = 1, 2, . . . n.

Lemma 2.5. For α ≥ 0 and µ > −1, the relations

Iα0+t
µ =

Γ(µ+ 1)

Γ(µ+ α+ 1)
tµ+α, Dα

0+t
µ =

Γ(µ+ 1)

Γ(µ− α+ 1)
tµ−α

are valid.

Lemma 2.6. Suppose that h ∈ L1(0, 1). Then the unique solution of

(2.1)


Dαu(t) + h(t) = 0, 0 < t < 1,[
I2−α
0 u(t)

]′∣∣∣
t=0

= 0 ,

u(1) = 0,

is
(2.2)

u(t) =
1

Γ(α)

[∫ t

0

[
tα−2(1− s)α−1 − (t− s)α−1

]
h(s)ds+ tα−2

∫ 1

t

(1− s)α−1h(s)ds

]
.

Proof. We may apply Lemma 2.4 to reduce BVP(2.1) to an equivalent integral
equation

u(t) = −
∫ t

0

(t− s)α−1

Γ(α)
h(s)ds+ c1t

α−1 + c2t
α−2

for some ci ∈ R, i = 1, 2. We get by using Lemma 2.5 that

[I2−α
0 u(t)]′ = −

∫ t

0

h(s)ds+ c1Γ(α).

Then
[
I2−α
0 u(t)

]′∣∣∣
t=0

= 0 implies c1 = 0. Since u(1) = 0,, we get

c2 =

∫ 1

0

(1− s)α−1

Γ(α)
h(s)ds.

Therefore, the unique solution of BVP(2.1) is

u(t) = −
∫ t

0

(t− s)α−1

Γ(α)
h(s)ds+ tα−2

∫ 1

0

(1− s)α−1

Γ(α)
h(s)ds.

Then (2.2) holds. Reciprocally, let u satisfy (2.2). Then

u(1) = 0,
[
I2−α
0 u(t)

]′∣∣∣
t=0

= 0,
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furthermore, we have Dαu(t) = −h(t). The proof is complete. 2

Lemma 2.7. Suppose that β ∈ (0, 1) and h ∈ L1(0, 1) is nonnegative. If u is the
solution of BVP(2.1), then

(2.3) inf
t∈[0,β]

t2−αu(t) ≥ [1− β2−α] sup
t∈[0,1]

t2−αu(t).

Proof. One sees from Lemma 2.6 that u satisfies (2.2). Let

G(t, s) =
1

Γ(α)

{
tα−2(1− s)α−1 − (t− s)α−1, 0 < s ≤ t ≤ 1,
tα−2(1− s)α−1, 0 < t ≤ s ≤ 1.

It follows that G(t, s) ≥ 0 for all t, s ∈ (0, 1] and u(t) =
∫ 1

0
G(t, s)h(s)ds.

One sees that

(2.4) t2−αG(t, s) ≤ 1

Γ(α)
(1− s)α−1 for s, t ∈ (0, 1].

For s ≥ t, we get

t2−αG(t, s) =
1

Γ(α)
(1− s)α−1 ≥ 1

Γ(α)
[1− β2−α](1− s)α−1.

For s ≤ t ≤ β, we have

t2−αG(t, s) =
1

Γ(α)

[
(1− s)α−1 − t2−α(t− s)α−1

]
≥ 1

Γ(α)
[1− β2−α](1− s)α−1.

Hence

(2.5) t2−αG(t, s) ≥ 1

Γ(α)
[1− β2−α](1− s)α−1, t ∈ (0, β], s ∈ (0, 1].

It follows from (2.2) that u(t) =
∫ 1

0
G(t, s)h(s)ds ≥ 0 for all t ∈ (0, 1]. Hence

(2.4) and (2.5) imply

inf
t∈[0,β]

t2−αu(t) = min
t∈[0,β]

∫ 1

0

t2−αG(t, s)h(s)ds

≥ 1

Γ(α)

∫ 1

0

[1− β2−α](1− s)α−1h(s)ds

≥ [1− β2−α]

∫ 1

0

G(t, s)h(s)ds.

Hence
inf

t∈[0,β]
t2−αu(t) ≥ [1− β2−α] sup

t∈[0,1]

t2−αu(t).
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Then (2.3) holds. The proof is completed. 2

We use the Banach space C[0, 1] with the norm

||u||∞ = max
t∈[0,1]

|u(t)|.

Let

X = Cα−1[0, 1] :=
{
u : u(t) = Iα−1

0+ x(t) + c1t
α−1 + c2t

α−2, t ∈ (0, 1], x ∈ C[0, 1]
}
.

It is easy to show that t2−αu ∈ C[0, 1] is bounded. For u ∈ X, define the norm

||u|| = sup
t∈[0,1]

|t2−αu(t)|.

By means of the linear functional analysis theory, we can prove that X is a Banach
space.

We seek solutions of BVP(1.1) that lie in the cone

P =

{
u ∈ X : u(t) ≥ 0, t ∈ [0, 1], inf

t∈[0,β]
t2−αu(t) ≥ [1− β2−α] sup

t∈[0,1]

t2−αu(t)

}
.

Define the operator T on P by

(Tu)(t) =

∫ 1

0

G(t, s)f(s, u(s))ds.

Lemma 2.8. Suppose that f : (0, 1) × [0,∞) → [0,∞) is continuous and satisfies
that for each r > 0 there exists ϕr ∈ L1(0, 1) such that |f(t, tα−2x)| ≤ ϕr(t) for all
t ∈ (0, 1) and |x| ≤ r. Then T : P → P is completely continuous.

Proof. We divide the proof into four steps.
Step 1. We prove that T : P → P is well defined.

For u ∈ P , we find u(t) ≥ 0 for all t ∈ [0, 1] and t2−αu(t) is continuous on [0, 1].
Hence there exits r > 0 such that

||u|| = sup
t∈[0,1]

t2−α|u(t)| < r.

Then there exists ϕr ∈ L1(0, 1) such that 0 ≤ f(t, tα−2x(t)) ≤ ϕr(t) for all t ∈ (0, 1).
Then (Tu)(t) ≥ 0 for all t ∈ [0, 1] and

t2−α|(Tu)(t)| = t2−α

∣∣∣∣∫ 1

0

G(t, s)f(s, u(s))ds

∣∣∣∣
≤ 1

Γ(α)

∫ 1

0

(1− s)α−1ϕr(s)ds.

By the method used in Lemma 2.7, we get Tu ∈ P . So T : P → P is well defined.
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Step 2. T is continuous.

Let {yn} be a sequence such that yn → y in X. Let

r = max

{
sup

t∈[0,1]

t2−α|yn(t)|, sup
t∈[0,1]

t2−α|y(t)|

}
.

Then for t ∈ [0, 1], we have ϕr ∈ L1(0, 1) such that 0 ≤ f(t, tα−2x) ≤ ϕr(t) for all
t ∈ (0, 1) and |x| ≤ r. So

t2−α|(Tyn)(t)− (Ty)(t)|

=

∣∣∣∣∫ 1

0

t2−αG(t, s)f(s, yn(s))ds−
∫ 1

0

t2−αG(t, s)f(s, y(s))ds

∣∣∣∣
≤

∫ 1

0

t2−αG(t, s)|f(s, yn(s))− f(s, y(s))|ds

≤ 1

Γ(α)

∫ 1

0

(1− s)α−1|f(s, sα−2s2−αyn(s))− f(s, sα−2s2−αy(s))|ds

≤ 2
1

Γ(α)

∫ 1

0

(1− s)α−1ϕr(s)ds.

Since f(t, sα−2x) is continuous in x, we have ||Tyn − Ty|| → 0 as n→ ∞.

Step 3. T maps bounded sets into bounded sets in X.

It suffices to show that for each r > 0, there exists a positive number L > 0
such that each x ∈ M = {y ∈ X : ||y|| ≤ r}, we have ||Ty|| ≤ L. By the definition
of T , we get

t2−α|(Ty)(t)| =

∫ 1

0

t2−αG(t, s)f(s, y(s))ds

≤ 1

Γ(α)

∫ 1

0

f(s, sα−2s2−αy(s))ds

≤ 1

Γ(α)

∫ 1

0

(1− s)α−1ϕl(s)ds.

It follows that

||Ty|| ≤ 1

Γ(α)

∫ 1

0

(1− s)α−1ϕl(s)ds for each y ∈ {y ∈ X : ||y|| ≤ l}.

So T maps bounded sets into bounded sets in X.

Step 4. T maps bounded sets into equicontinuous sets in X.

We prove that T is equicontinuous on compact sub interval of (0, 1]. Let t1, t2 ∈
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[0, 1] with t1 < t2 and y ∈M = {y ∈ X : ||y|| ≤ l} defined in Step 2. We have

|t2−α
1 (Ty)(t1)− t2−α

2 (Ty)(t2)|

=

∣∣∣∣∫ 1

0

t2−α
1 G(t1, s)f(s, y(s))ds−

∫ 1

0

t2−α
2 G(t2, s)f(s, y(s))ds

∣∣∣∣
≤

∫ 1

0

|t2−α
1 G(t1, s)− t2−α

2 G(t2, s)|f(s, sα−2s2−αy(s))ds

≤
∫ t1

0

|t2−α
1 (t1 − s)α−1 − t2−α

2 (t2 − s)α−1|
Γ(α)

f(s, sα−2s2−αy(s))ds

+

∫ t2

t1

t2−α
1 (t1 − s)α−1

Γ(α)
f(s, sα−2s2−αy(s))ds

+

∫ 1

t2

t2−α
1 tα−2

1 (1− s)α−1 − t2−α
2 tα−2

2 (1− s)α−1

Γ(α)
f(s, sα−2s2−αy(s))ds

≤
∫ 1

0

∣∣∣∣ t2−α
1 (t1 − s)α−1 − t2−α

2 (t2 − s)α−1

Γ(α)

∣∣∣∣ϕl(s)ds
+
|t1 − t2|
Γ(α)

∫ 1

0

ϕl(s)ds.

As t1 → t2, the right-hand side of the above inequality tends to zero. There-
fore, T is equicontinuous on [0, 1]. Then T is completely continuous. The proof is
complete. 2

3. Main results

In this section, we prove the main results. Let

M =
1

Γ(α+ 1)
, W =

(1− β2−α)[1− (1− β)α]

αΓ(α)
.

(A). f : (0, 1)× [0,∞) → [0,∞) is continuous with
∫ β

0
(1− s)α−1f (s, 1) ds > 0

and satisfies that for each r > 0 there exists ϕr ∈ L1(0, 1) such that |f(t, tα−2x)| ≤
ϕr(t) for all t ∈ (0, 1) and |x| ≤ r.

(B). there exits real numbers λ < 0 < µ and σ2 > σ1 > 0 such that

f(t, cx) ≥ cλf(t, x), c ≥ σ2, t ∈ (0, β], x ∈ [0, σ1]

and
f(t, c) ≥ cµf(t, 1), 0 < c < σ1, t ∈ (0, β].

Theorem 3.1. Suppose that (A) and (B) hold. Furthermore, there exist constants
e1, e2 and c such that

0 < e1 < e2 <
e2

1− β2−α
< c, Wc > Me2,
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and
(D1) f(t, tα−2u) ≤ c

M for t ∈ (0, 1), u ∈ [0, c];
(D2) f(t, tα−2u) ≤ e1

M for t ∈ (0, 1) and u ∈ [0, e1];

(D3) f(t, tα−2u) ≥ e2
W for t ∈ (0, β] and u ∈

[
e2,

e2
1−β2−α

]
.

Then BVP(1.1) has at least three positive solutions x1, x2 and x3 satisfying

(3.1) sup
t∈[0,1]

t2−αx1(t) < e1, inf
t∈[0,β]

t2−αx2(t) > e2

and

(3.2) sup
t∈[0,1]

t2−αx3(t) > e1, inf
t∈[0,β]

t2−αx3(t) < e2.

Proof. Define the functional ψ by

ψ(x) = inf
t∈[0,β]

t2−αx(t) for x ∈ P.

It is easy to see that ψ is a nonnegative convex continuous functional on the cone
P . ψ(y) ≤ ||y|| for all y ∈ P . For x ∈ P , it follows from (A) and Lemma 2.8 that
TP ⊆ P and T : P → P is completely continuous.

Corresponding to Lemma 2.1, choose

d =
e2

1− β2−α
, b = e2, a = e1.

Then 0 < a < b < d < c. We divide the remainder of the proof into four steps.
Step 1. Prove that T (Pc) ⊂ Pc.

For x ∈ Pc, one has ||x|| ≤ c. Then

0 ≤ t2−αx(t) ≤ c, t ∈ [0, 1].

It follows from (D1) that

f(t, x(t)) = f(t, tα−2t2−αx(t)) ≤ c

M
, t ∈ (0, 1).

Then Tx ∈ P implies that

||Tx|| = sup
t∈[0,1]

t2−α(Tx)(t)

= sup
t∈[0,1]

∫ 1

0

t2−αG(t, s)f(s, x(s))ds

≤ sup
t∈(0,1]

∫ 1

0

t2−αG(t, s)
c

M
ds

≤ c

M

∫ 1

0

(1− s)α−1

Γ(α)
ds

≤ 1

Γ(α+ 1)

c

M
= c.
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Then Tx ∈ Pc, Hence T (Pc). This completes the proof of Step 1.
Step 2. Prove that

{y ∈ P (ψ; b, d)|ψ(y) > b} = {y ∈ P

(
ψ; e2,

e2
1− β2−α

)
|ψ(y) > e2} ̸= ∅

and ψ(Ty) > b = e2 for y ∈ P
(
ψ; e2,

e2
1−β2−α

)
.

It is easy to see that
{
x ∈ P

(
ψ; e2,

e2
1−β2−α

)
, ψ(x) > e2

}
̸= ∅. For x ∈

P (ψ, e2, e2/β
α), then ψ(x) ≥ e2 and ||x|| ≤ e2

1−β2−α . Then

inf
t∈[0,β]

t2−αx(t) ≥ e2, sup
t∈[0,1]

x(t) ≤ e2
1− β2−α

.

Hence

e2 ≤ t2−αx(t) ≤ e2
1− β2−α

, t ∈ [0, β].

Hence (D3) implies that

f(t, x(t)) = f(t, tα−2t2−αx(t) ≥ e2
W
, t ∈ (0, β].

We get

ψ(Tx) = inf
t→[0,β]

∫ 1

0

t2−αG(t, s)f(s, x(s))ds

> inf
t→[0,β]

∫ β

0

t2−αG(t, s)f(s, x(s))ds

≥
∫ β

0

(1− s)α−1(1− β2−α)

Γ(α)
f(s, x(s))ds

≥
∫ β

0

(1− s)α−1(1− β2−α)

Γ(α)

e2
W
ds

≥ e2.

This completes the proof of Step 2.
Step 3. Prove that ||Ty|| < a = e1 for y ∈ P with ||y|| ≤ a.

For x ∈ Pe1 , we have

sup
t∈[0,1]

t2−αx(t) ≤ e1 = a.

It follows from (D2) and Tx ∈ P that

f(t, x(t)) = f(t, tα−2t2−αx(t)) ≤ e1
M
, t ∈ (0, 1).
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The proof is similar to that of Step 1. Then ||Ty|| < e1 for ||y|| ≤ e1. This completes
that proof of Step 3.

Step 4. Prove that ψ(Ty) > b for y ∈ P (ψ; b, c) with ||Ty|| > d.

For x ∈ P (ψ; b, c) = P (ψ, e2, c) and ||Tx|| > d = e2
1−β2−α , then

inf
t∈[0,β]

t2−αx(t) ≥ e2, sup
t∈[0,1]

t2−α(Tx)(t) ≥ e2
1− β2−α

and ||x|| = sup
t∈(0,1]

t2−αx(t) ≤ c.

Hence we have from Tx ∈ P that

ψ(Tx) = inf
t∈[0,β]

t2−α(Tx)(t)

= (1− β2−α) sup
t∈[0,1]

t2−α(Tx)(t)

≥ (1− β2−α)
e2

1− β2−α

= b.

This completes the proof of Step 4.

From above steps, (E1), (E2) and (E3) of Lemma 2.1 are satisfied. Then, by
Lemma 2.1, T has three fixed points x1, x2 and x3 ∈ Pc such that

||x1|| < a, ψ(x2) > b, ||x3|| ≥ a, ψ(x3) ≤ b,

i.e., x1, x2 and x3 satisfy (3.1) and (3.2). Hence BVP(1.1) has at least three positive
solutions x1, x2 and x3.

Finally, we prove that x1, x2 and x3 are unbounded.

In fact, if xi is bounded on (0, 1], then we have a positive number r > 0 such
that 0 ≤ x−λ

i (t) ≤ r for all t ∈ (0, 1]. Choose c > 0 sufficiently large such that
c||xi|| > σ2 and 1

c < σ1.

Since t2−αxi(t) is continuous on [0, 1], we see that there is t0 ∈ [0, 1] such that

t2−α
0 xi(t0) = ||xi||. So x(t0) = ||xi||

t2−α
0

≥ ||xi||. Then for t ∈ [0, β], we have

cxi(t) = c
t2−αxi(t)

t2−α
≥ ct2−αxi(t) ≥ c(1− β2−α)||xi|| ≥ (1− β2−α)σ2.
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Using (B), then

t2−αxi(t) = t2−α

∫ 1

0

G(t, s)f(s, xi(s))ds

≥
∫ β

0

t2−αG(t, s)f(s, xi(s))ds

≥ 1− β2−α

Γ(α)

∫ β

0

(1− s)α−1f

(
s, cxi(s)

1

c

)
ds

≥ 1− β2−α

Γ(α)

∫ β

0

cλxλi (s)(1− s)α−1f

(
s,

1

c

)
ds

≥ 1− β2−α

Γ(α)

∫ β

0

cλxλi (s)(1− s)α−1 1

cµ
f (s, 1) ds

≥ 1− β2−α

Γ(α)

∫ β

0

cλ−µ (1− β2−α)λσλ
2

cλ
(1− s)α−1f (s, 1) ds

=
c−µ(1− β2−α)λ+1σλ

2

Γ(α)

∫ β

0

(1− s)α−1f (s, 1) ds.

Then

r
1

−λ ≥ xi(t) ≥
c−µ(1− β2−α)λ+1σλ

2

Γ(α)

∫ β

0

(1− s)α−1f (s, 1) ds
1

t2−α
.

Let t → 0, we get from (A) that r
1

−λ ≥ ∞, a contraction. So x1, x2 and x3 are
unbounded. The proof is complete. 2

Theorem 3.2. Suppose that (A) and (B) hold. Furthermore, there exist positive
numbers a < b < c such that Wb > Ma, and

(E1) f(t, tα−2u) ≥ c
W for t ∈ (0, β], u ∈ [c, c/(1− β2−α];

(E2) f(t, tα−2u) ≤ b
M for t ∈ (0, 1) and u ∈ [0, b];

(E3) f(t, tα−2u) ≥ a
W for t ∈ (0β] and u ∈

[
(1− β2−α)a, a

]
.

Then BVP(1.1) has at least two positive solutions x1 and x2 satisfying

sup
t∈[0,1]

tα−2x1(t) > a, sup
t∈[0,1]

tα−2x1(t) < b,

sup
t∈[0,1]

tα−2x2(t) > b, inf
t∈[0,β]

tα−2x2(t) < c.

(3.3)

Proof. Define the nonnegative, increasing and continuous functionals γ, θ, α : P → I
by

γ(x) = inf
t∈[0,β]

tα−2x(t), x ∈ P,

θ(x) = sup
t∈[0,1]

tα−2x(t), x ∈ P,

α(x) = sup
t∈[0,1]

tα−2x(t), x ∈ P.
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It is easy to see that θ(0) = 0 and

γ(x) ≤ θ(x) ≤ α(x), x ∈ P

and for x ∈ P we have γ(x) ≥ (1 − β2−α)||x||, θ(νx) ≤ νθ(x) for all ν ∈ [0, 1] and
x ∈ P . From (A) and Lemma 2.8, we have TP ⊂ P and T is completely continuous.
Hence (i)-(iii) in Lemma 2.2 hold. To obtain two positive solutions of BVP(1.1), it
suffices to show that the condition (iv) in Lemma 2.2 holds.

First, we verify that

(3.4) γ(Tx) > c for alll x ∈ ∂P (γ, c).

Since x ∈ ∂P (γ, c), we get mint∈[0,β] t
2−αx(t) = c. Then ||x|| ≤ 1

1−β2−α γ(x) ≤
c

1−β2−α . Then c ≤ t2−αx(t) ≤ c
1−β2−α for all t ∈ [0, β]. Hence (E1) implies

f(t, x(t)) = f(t, tαt2−αx(t)) ≥ c

W
, t ∈ [0, β] .

So we get from Tx ∈ P that

γ(Tx)(t) = inf
t∈[0,β]

∫ 1

0

t2−αG(t, s)f(s, x(s))ds

> inf
t∈[0,β]

∫ β

0

t2−αG(t, s)f(s, x(s))ds

≥
∫ β

0

(1− β2−α)(1− s)α−1

Γ(α)

c

W
ds

≥ c.

Secondly, we prove that

(3.5) θ(Tx) < b for all x ∈ ∂P (θ, b).

Since θ(x) = b, we get supt∈[0,1] t
2−αx(t) = b. Then

t2−αx(t) ≤ b for all t ∈ [0, 1].

Hence (E2) implies

f(t, x(t)) = f(t, tα−2t2−αx(t)) ≤ b

M
, t ∈ (0, 1).
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So the definition of T imply

θ(Tx) = sup
t∈[0,1]

t2−α(Tx)(t)

≤ sup
t∈[0,1]

∫ 1

0

t2−αG(t, s)f(s, x(s))ds

≤
∫ 1

0

(1− s)α−1

Γ(α)

b

M
ds

≤ 1

Γ(α+ 1)

b

M

= b.

Finally, we prove that

(3.6) P (α, a) ̸= ∅, α(Tx) > a for all x ∈ ∂P (α, a).

It is easy to see that P (α, a) ̸= ∅. For x ∈ ∂P (α, a), we have supt∈[0,1] t
2−αx(t) = a.

Then
(1− β2−αa ≤ t2−αx(t) ≤ a for all t ∈ [0, β] .

Then (E3) implies

f(t, x(t)) = f(t, 2α−2t2−αx(t)) ≥ a

W
, t ∈ [0, β] .

Similarly to the first step, we can prove that α(Tx) > a. It follows from above
discussion that all conditions in Lemma 2.2 are satisfied. Then T has two fixed
points x1, x2 in P satisfying (3.3). So BVP(1.1) has two positive solutions x1 and
x2 satisfying (3.3). The proof is complete. 2

Theorem 3.3. Suppose that (A) and (B) hold. Furthermore, there exist positive
numbers a < βαb < b < c such that Wc > Mb, and

(E4) f(t, tα−2u) ≤ c
M for t ∈ (0, 1), u ∈ [0, c/(1− β2−α];

(E5) f(t, tα−2u) ≥ b
W for t ∈ (0, β] and u ∈ [(1− β2−αb, b];

(E6) f(t, tα−2u) ≤ a
M for t ∈ (0, 1) and u ∈ [0, a].

Then BVP(1.1) has at least two positive solutions x1 and x2 satisfying

sup
t∈[0,1]

tα−2x1(t) > a, sup
t∈[0,1]

tα−2x1(t) < b,

sup
t∈[0,1]

tα−2x2(t) > b, inf
t∈[0,β]

tα−2x2(t) < c.

(3.7)

Proof. Let the nonnegative, increasing and continuous functionals γ, θ, α : P → I
be defined in the proof of Theorem 3.2. By using Lemma 2.3, the remainder of the
proof is similar to that of the proof of Theorem 3.2 and is omitted. 2
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