DOI QR코드

DOI QR Code

POSITIVE SOLUTION FOR A CLASS OF NONLOCAL ELLIPTIC SYSTEM WITH MULTIPLE PARAMETERS AND SINGULAR WEIGHTS

  • AFROUZI, G.A. (Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran) ;
  • ZAHMATKESH, H. (Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran)
  • Received : 2016.05.04
  • Accepted : 2016.06.22
  • Published : 2017.01.30

Abstract

This study is concerned with the existence of positive solution for the following nonlinear elliptic system $$\{-M_1(\int_{\Omega}{\mid}x{\mid}^{-ap}{\mid}{\nabla}u{\mid}^pdx)div({\mid}x{\mid}^{-ap}{\mid}{\nabla}u{\mid}^{p-2}{\nabla}u)\\{\hfill{120}}={\mid}x{\mid}^{-(a+1)p+c_1}\({\alpha}_1A_1(x)f(v)+{\beta}_1B_1(x)h(u)\),\;x{\in}{\Omega},\\-M_2(\int_{\Omega}{\mid}x{\mid}^{-bq}{\mid}{\nabla}v{\mid}^qdx)div({\mid}x{\mid}^{-bq}{\mid}{\nabla}v{\mid}^{q-2}{\nabla}v)\\{\hfill{120}}={\mid}x{\mid}^{-(b+1)q+c_2}\({\alpha}_2A_2(x)g(u)+{\beta}_2B_2(x)k(v)\),\;x{\in}{\Omega},\\{u=v=0,\;x{\in}{\partial}{\Omega},$$ where ${\Omega}$ is a bounded smooth domain of ${\mathbb{R}}^N$ with $0{\in}{\Omega}$, 1 < p, q < N, $0{\leq}a$ < $\frac{N-p}{p}$, $0{\leq}b$ < $\frac{N-q}{q}$ and ${\alpha}_i,{\beta}_i,c_i$ are positive parameters. Here $M_i,A_i,B_i,f,g,h,k$ are continuous functions and we discuss the existence of positive solution when they satisfy certain additional conditions. Our approach is based on the sub and super solutions method.

Keywords

References

  1. G.A. Afrouzi, N. T. Chung and S. Shakeri, Existence of positive solutions for Kirchhoff type equations, Electron. J. Diff. Equ., Vol. 2013 (180) (2013), 1-8. https://doi.org/10.1186/1687-1847-2013-1
  2. G.A. Afrouzi, N. T. Chung and S. Shakeri, Existence of positive solutions for Kirchhoff type systems with singular weights, to appear.
  3. G.A. Afrouzi, H. Zahmatkesh and S. Shakeri, Existence results for a class of Kirchhoff type systems with Caffarelli-Kohn-Nirenberg exponents, An. St. Univ. Ovidius Constanta, Ser. Mat, (2016).
  4. G.A. Afrouzi, H. Zahmatkesh and S. Shakeri, Existence results for a class of Kirchhoff type systems with combined nonlinear effects, to appear.
  5. J. Ali and R. Shivaji, Positive solutions for a class of p-laplacian systems with multiple parameters, J. Math. Anal. Appl. 335 (2007), 1013-1019. https://doi.org/10.1016/j.jmaa.2007.01.067
  6. J. Ali, R. Shivaji, and M. Ramaswamy, Multiple positive solutions for classes of elliptic systems with combined nonlinear effects, Differential Integral Equations 19 (2006), No. 6, 669-680.
  7. C. Atkinson and K. El Kalli, Some boundary value problems for the Bingham model, J. Non-Newtonian Fluid Mech. 41 (1992), 339-363. https://doi.org/10.1016/0377-0257(92)87006-W
  8. H. Bueno, G. Ercole, W. Ferreira, and A. Zumpano, Existence and multiplicity of positive solutions for the p-Laplacian with nonlocal coefficient, J. Math. Anal. Appl. 343 (2008), No. 1, 151-158. https://doi.org/10.1016/j.jmaa.2008.01.001
  9. L. Caffarelli, R. Kohn, and L. Nirenberg, First order interpolation inequalities with weights, Compositio Math. 53 (1984), No. 3, 259-275.
  10. A. Canada, P. Drabek, and J.L. Gamez, Existence of positive solutions for some problems with nonlinear diffusion, Trans. Amer. Math. Soc. 349 (1997), No. 10, 4231-4249. https://doi.org/10.1090/S0002-9947-97-01947-8
  11. M. Chhetri, S. Oruganti, and R. Shivaji, Existence results for a class of p-Laplacian problems with sign-changing weight, Differential Integral Equations 18 (2005), No. 9, 991-996.
  12. N.T. Chung, An existence result for a class of Kirchhoff type systems via sub and supersolutions method, Appl. Math. Lett., 35 (2014), 95-101. https://doi.org/10.1016/j.aml.2013.11.005
  13. N.T. Chung, G. A. Afrouzi, Existence of positive solutions for a class of nonlocal elliptic systems with multiple parameters, Math. Bech., to appear
  14. F. Cstea, D. Motreanu, and V. Radulescu, Weak solutions of quasilinear problems with nonlinear boundary condition, Nonlinear Anal. 43 (2001), No. 5, Ser. A: Theory Methods, 623-636. https://doi.org/10.1016/S0362-546X(99)00224-2
  15. E.N. Dancer, Competing species systems with diffusion and large interaction, Rend. Sem. Mat. Fis. Milano 65 (1995), 23-33. https://doi.org/10.1007/BF02925250
  16. J.F. Escobar, Uniqueness theorems on conformal deformations of metrics, Sobolev inequalities, and an eigenvalue estimate, Comm. Pure Appl. Math. 43 (1990), No. 7, 857-883. https://doi.org/10.1002/cpa.3160430703
  17. F. Fang and S. Liu, Nontrivial solutions of superlinear p-Laplacian equations, J. Math. Anal. Appl. 351 (2009), No. 1, 138-146. https://doi.org/10.1016/j.jmaa.2008.09.064
  18. X. Han and G. Dai, On the sub-supersolution method for p(x)-Kirchhoff type equations, Journal of Inequalities and Applications, 2012 (2012): 283. https://doi.org/10.1186/1029-242X-2012-283
  19. G. Kirchhoff, Mechanik, Teubner, Leipzig, Germany, 1883.
  20. G.S. Ladde, V. Lakshmikantham, and A. S. Vatsale, Existence of coupled quasisolutions of systems of nonlinear elliptic boundary value problems, Nonlinear Anal. 8 (1984), No. 5, 501-515. https://doi.org/10.1016/0362-546X(84)90090-7
  21. O.H. Miyagaki and R. S. Rodrigues, On positive solutions for a class of singular quasilinear elliptic systems, J. Math. Anal. Appl., 334 (2007), No 2, 818-833. https://doi.org/10.1016/j.jmaa.2007.01.018
  22. M. Nagumo, Uber die Differentialgleichung y'' = f(x, y, y'), Proceedings of the Physico-Mathematical Society of Japan 19 (1937), 861-866.
  23. H. Poincare, Les fonctions fuchsiennes et l'equation ${\Delta}u=e^u$, J. Math. Pures Appl. 4 (1898), 137-230.
  24. S.H. Rasouli, On the existence of positive solution for a class of nonlinear elliptic system with multiple parameters and singular weights, Commun. Korean Math. Soc. 27 (2012), No. 3, pp. 557-564. https://doi.org/10.4134/CKMS.2012.27.3.557
  25. P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations 51 (1984), No. 1, 126-150. https://doi.org/10.1016/0022-0396(84)90105-0
  26. B. Xuan, The eigenvalue problem for a singular quasilinear elliptic equation, Electron. J. Diff. Equ. 2004 (2004), No. 16, 11 pp.
  27. B. Xuan, The solvability of quasilinear Brezis-Nirenberg-type problems with singular weights, Nonlinear Anal. 62 (2005), No. 4, 703-725. https://doi.org/10.1016/j.na.2005.03.095