• Title/Summary/Keyword: multiple objective programming

Search Result 118, Processing Time 0.022 seconds

STABILITY OF THE MULTIPLE OBJECTIVE LINEAR STOCHASTIC PROGRAMMING PROBLEMS

  • Cho, Gyeong-Mi
    • Bulletin of the Korean Mathematical Society
    • /
    • v.32 no.2
    • /
    • pp.287-296
    • /
    • 1995
  • Wets ([4],[5],[6]) considered single objective linear two-stage programming problem under uncertainty with complete recourse. Artstein, Dupacova, Romisch, Schultz and Wets studied stability of this problem id depth. But in many real world problems to make best decision, we need multiple objective functions. So we consider the following multiple objective two-stage programming problems with complete fixed recourse.

  • PDF

STABILITY OF EQUIVALENT PROGRAMMING PROBLEMS OF THE MULTIPLE OBJECTIVE LINEAR STOCHASTIC PROGRAMMING PROBLEMS

  • Cho, Gyeong-Mi
    • Journal of the Korean Mathematical Society
    • /
    • v.35 no.2
    • /
    • pp.259-268
    • /
    • 1998
  • In this paper the stochastic multiple objective programming problems where the right-hand-side of the constraints is stochastic are considered. We define the equivalent scalar-valued problem and study the stability of the equivalent scalar-valued problem with respect to the weight parameters and probability mesures under reasonable assumptions.

  • PDF

AN IMPLEMENTATION OF WEIGHTED L$_{\infty}$ - METRIC PROGRAM TO MULTIPLE OBJECTIVE PROGRAMMING

  • Lee, Jae-Hak
    • The Pure and Applied Mathematics
    • /
    • v.3 no.1
    • /
    • pp.73-81
    • /
    • 1996
  • Multiple objective programming has been a popular research area since 1970. The pervasiveness of multiple objective in decision problems have led to explosive growth during the 1980's. Several approaches (interactive methods, feasible direction methods, criterion weight space methods, Lagrange multiplies methods, etc) have been developed for solving decision problems having multiple objectives. However there are still many mathematically challengings including multiple objective integer, nonlinear optimization problems which require further mathematically oriented research. (omitted)

  • PDF

A Fuzzy-Goal Programming Approach For Bilevel Linear Multiple Objective Decision Making Problem

  • Arora, S.R.;Gupta, Ritu
    • Management Science and Financial Engineering
    • /
    • v.13 no.2
    • /
    • pp.1-27
    • /
    • 2007
  • This paper presents a fuzzy-goal programming(FGP) approach for Bi-Level Linear Multiple Objective Decision Making(BLL-MODM) problem in a large hierarchical decision making and planning organization. The proposed approach combines the attractive features of both fuzzy set theory and goal programming(GP) for MODM problem. The GP problem has been developed by fixing the weights and aspiration levels for generating pareto-optimal(satisfactory) solution at each level for BLL-MODM problem. The higher level decision maker(HLDM) provides the preferred values of decision vector under his control and bounds of his objective function to direct the lower level decision maker(LLDM) to search for his solution in the right direction. Illustrative numerical example is provided to demonstrate the proposed approach.

A Multiple Objective Mixed Integer Programming Model for Sewer Rehabilitation Planning (하수관리 정비 계획 수립을 위한 다중 목적 혼합 정수계획 모형)

  • Lee Yongdae;Kim Sheung Kown;Kim Jaehee;Kim Joonghun
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2003.05a
    • /
    • pp.660-667
    • /
    • 2003
  • In this study, a Multiple Objective Mixed Integer Programming (MOMIP) Model is developed for sewer rehabilitation planning by considering cost, inflow/infiltration. A sewer rehabilitation planning model is required to decide the economic life of the sewer by considering trade-off between cost and inflow/infiltration. And it is required to find the optimal rehabilitation timing, according to the cost effectiveness of each sewer rehabilitation within the budget. To develop such a model, a multiple objective mixed integer programming model is formulated based on network flow optimization. The network is composed of state nodes and arcs. The state nodes represent the remaining life and the arcs represent the change of the state. The model consider multiple objectives which are cost minimization and minimization of inflow/infiltration. Using the multiple objective optimization, the trade-off between the cost and inflow/infiltration is presented to the planner so that a proper sewer rehabilitation plan can be selected.

  • PDF

An interactive face search procedure for multiple objective linear programming

  • Lee, Dong-Yeup
    • Korean Management Science Review
    • /
    • v.10 no.2
    • /
    • pp.11-26
    • /
    • 1993
  • This paper presents a new interactive procedure for multiple objective linear programming problem (MOLP). In practical multiple objective linear programming applications, there is usually no need for the decision maker to consider solutions which are not efficient. Therefore, the interactive procedure presented here searches only among efficient solutions and terminates with a solution that is guaranteed to be efficient. It also can converge to nonextreme efficient final solutions rather than being restricted to only extreme efficient points of the feasible set. The procedure does not require sophisticated judgements or inputs from the decision maker. One of the most attractive features of the procedure however, is that the method allows the DM to examine the efficient faces it finds. As iteration goes, the DM can explore a wide variety of efficient faces rather than efficient faces confined to only certain subregion of the feasible set of problem MOLP since the efficient faces that the procedure finds need not be adjacent. This helps the DM explore the nature of the efficient set of problem MOLP and also helps the DM have confidence with a final solution. For these reasons, I feel that the procedure offer significant promise in solving multiple objective linear programs rapidly and in a satisfying manner to the DM.

  • PDF

Fuzzy Group Decision Making for Multiple Decision Maker-Multiple Objective Programming Problems

  • Yano, Hitoshi
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.380-383
    • /
    • 2003
  • In this paper, we propose a fuzzy group decision making method for multiple decision maker-multiple objective programming problems to obtain the agreeable solution. In the proposed method, considering the vague nature of human subjective judgement it is assumed that each of multiple decision makers has a fuzzy goal for each of his/her own objective functions. After eliciting the membership functions from the decision makers for their fuzzy goals, total M-Pareto optimal solution concept is defined in membership spaces in order to deal with multiple decision maker-multiple objective programming problems. For generating a candidate of the agreeable solution which is total M-Pareto optimal, the extended weighted minimax problem is formulated and solved for some weighting vector which is specified by the decision makers in their subjective manner, Given the total M-Pareto optimal solution, each of the derision makers must either be satisfied with the current values of the membership functions, or update his/her weighting vector, However, in general, it seems to be very difficult to find the agreeable solution with which all of the decision makers are satisfied perfectly because of the conflicts between their membership functions. In the proposed method, each of the decision makers is requested to estimate the degree of satisfaction for the candidate of the agreeable solution. Using the estimated values or satisfaction of each of the decision makers, the core concept is desnfied, which is a set of undominated candidates. The interactive algorithm is developed to obtain the agreeable solution which satisfies core conditions.

  • PDF

Multiple Objective Linear Programming with Minimum Levels and Trade Offs through the Interactive Methods

  • Chun, Man-Sul;Kim, Man-Sik
    • Journal of the military operations research society of Korea
    • /
    • v.13 no.1
    • /
    • pp.116-124
    • /
    • 1987
  • This paper studies to develop the procedure which is combined by the progressive goals and progressive weights generation method. This procedure minimizes the number of questions the decision maker has to make, and also satisfies the generated minimum goal of each objective function. With the procedure developed, we are able to improve the previous multiple objective linear programming techniques in two points.

  • PDF

The Mathematical Relationship Between the Region of Efficient Objective Value and the Region of Weight in Multiple Objective Linear Programming (다목적 선형계획 문제의 유효 목적함수 영역과 가중치 수리적 관계에 관한 연구)

  • 소영섭
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.19 no.2
    • /
    • pp.119-128
    • /
    • 1994
  • There are three important regions im Multiple Objective Linear Programming (MOLP). One is the region of efficient solutions, another is the region of weight to be used for finding efficient solutions, the third is the region of efficient (nondominated) objective values. In this paper, first, we find the condition of extreme point in the region of efficient objective values. Second, we find that the sum of the dimension of the weight region and the dimension of efficient objective values region is constant. Using the above, it is shown that we find the shape and dimension of weight region corresponding to the given region or efficient objective values and vice versa.

  • PDF

Computer-Aided Optimal Grillage Design by Multiple Objective Programming Method (다목적함수(多目的函數) 최적화(最適化) 기법(技法)에 의한 격자형(格子型) 구조물(構造物)의 최적설계(最適設計))

  • S.J.,Yim;Y.S.,Yang
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.25 no.1
    • /
    • pp.11-20
    • /
    • 1988
  • From the engineering point of view, a synthesis as well as an analysis technique is explored to search for the improved design of grillage which is common in ship structure. As an approximate analysis method for the grillage, an interaction reaction method is developed and compared with the finite element method. It is found that the discrepancy between these two methods is so negligible that the percent method could be used effectively for the grillage analysis. As an optimization technique, a feasible direction method could be used is combined with the intersection reaction method in order to design a minimum weight optimal grillage. The feasible direction method shows a good numerical performance although it requires more calculation times compared with the direct search method. Finally, the application of multiple objective optimization method to grillage is investigated in order to resolve conflicts existed between the multiple objectives which is a common characteristic of structure design problem. Goal programming method is extended to handle a nonlinear property of constraints and objective functions. It seems that the nonlinear goal programming could help not only to establish a relative importance of each objective, but also enable the designer to choose the best combination of design variables.

  • PDF