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STABILITY OF EQUIVALENT
PROGRAMMING PROBLEMS
OF THE MULTIPLE OBJECTIVE LINEAR
STOCHASTIC PROGRAMMING PROBLEMS

GYEONG-M1I CHO

ABSTRACT. In this paper the stochastic multiple objective pro-
gramming problems where the right-hand-side of the constraints
is stochastic are considered. We define the equivalent scalar-valued
problem and study the stability of the equivalent scalar-valued prob-
lem with respect to the weight parameters and probability mesures
under reasonable assumptions.

1. Introduction

This paper is a sequel to [1], where the following multiple objec-
tive two-stage programming problem with complete fixed recourse was
investigated.

VMIN g(z) + E¢[mind'y] - 1

(1) subject to Az =b
Dz+Wy=¢, £on(ES,p)
20, y2>0,

where A is an m X n matrix, D is an m X n matrix, & is an n—vector,
d and y are i—vectors, 1 = (1,--- ,1)’ is a r—vector, b is an m—vector
and £ is a random vector defined on the probability measure space
(37 8"/"'), g(a:) = (gl(z)f o ,g'r(x))l’ gz(x) = €1T1 + -+ + Cinln, 1 <
i < r,is a linear function, W € L(R™, R™) such that forallé € =, {y €
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R* | Wy=¢—-Dz, y>0}#0and {uc R™ | Wu <d} #0, and E;
denotes the mean operator with respect to &.

All quantities considered here belong to the reals. We use the notation
¢ to denote a random vector of dimension 7, as well as the specific
values assumed by this random variable.

In (1], Cho defined an equivalent scalar-valued problem for the prob-
lem (1) and observed the stability of the problem with respect to the
weight parameter and probability distributions of the random vector,
respectively. In this paper we study the stability of the equivalent
scalar-valued problem with respect to the weight parameters and the
probability distributions.

In the following we will introduce the parametric programming analysis
due to D. Klatte([3]) which we are going to use to prove our main result.
Let us consider the following programming problem with a parameter
teT:

p(t) : min{f(z,?) : € M(t)},
where T is a metric space with distance function d(-,-), M is a closed-

valued multifunction from T into R™, and f : R" xT — R is a
continuous function. Given @ C R", for any t € T, we define

Mo(t) = M(t) NdQ,

pq(t) = inf{f(z,t) | € Mg(t)},
Po(t) = {z € Mq(t) | f(=,t) = po(t)},

where clQ denotes the closure of ). We call pg the optimal value
function with respect to cl@Q and g the optimal set function with
respect to clQ. Now we shall give some basic definitions and theorems.

DEFINITION 1.1. Given t° € T, a nonempty set X C R™ is called
a complete local minimizing set (CLM set) for f(-,t°) on M(t°) if
there is an open set @ containing X such that X = 9¢g(t°).

Note that a CLM set with respect to p(¢°) is always a subset of the
set of all local minimizers of p(¢°), and CLM set are closed under our
general assumptions on the problem p(-).
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DEFINITION 1.2. M : T — R", is said to be closed at t° if and only
if t* — t°, 2% — 2°, as k — 0o, and z¥ € M(tF) = z° € M(¢t°).

DEFINITION 1.3. A multifunction M from T to R™ is said to be
pseudo-Lipschitzian at (z°,1°), where t° € T and z° € M(t°), if there

are neighborhoods U = U(t°) and V = V(z°) and a positive real
number L such that both

M@)nV cM@#°)+ L-d(t,t° - B, and
M)V C M(t) + L - d(t,t°) - B,

hold for all ¢ € U, where B, is the closed unit ball in R", and
X+8-Bu={z+p-u|lzeX, vueB,},

for X CR" and B € R.

THEOREM 1.4. ([3]|) Consider the parametric program p(t) : fix
some t° € T with the following conditions:

(C1) Assume that there exists a bounded open subset V of R™ and
a nonempty subset X of V such that X = ¢y (t°).

(C2) Let the multifunction M be closed-valued and closed at t°.

(C3) Let M be a pseudo-Lipschitzian at each pair (z°,t°) € ¥y (t°) x
{t°}.

(C4) Suppose there are real numbers p € (0,1], Ly > 0 and 65 > 0
such that

| f(z,1°) — f(,2) |< Ly (Il € — y || +d(2, £°))

for each z, y € clV and each t satisfying d(t,t°) < d5.

Then the following conclusions hold:

(a) The multifunction vy is upper semicontinuous at t°, i.e., for
each € > 0 there exists 1 > 0 such that

Yv(t) CYv(t°) +€- B, when d(t,t°) <.

(b) There exist positive real numbers §, and L, such that vy (t) # 0
is a CLM set for f(-,t) on M(t) and such that

[ pv(t) — pv(t°) |< L, - d(t,t°)P whenever d(t,t°) < 6.
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It is clear that we could also write problem (1) as:

VMIN  g(z) + E¢[mind'y: Wy =& — Dz,y > 0]- 1
(2) subject to Az =1b
x> 0.

Now we define a feasible solution to problem (1).

DEFINITION 1.5. ([5]) A feasible solution to (1) is a vector x such
that it satisfies the first stage constraints and such that for any £ € =, it

is always possible to find a feasible solution to the second stage problem
min{d'y | Wy = { ~ Dz, y > 0}.

Let K be the set of feasible solutions of (1), then
K={z|Az=b,z > 0}n{z |V{, 3y = 0such that Wy =¢ - Dz}.
Then K is a convex polyhedron. Define

Q(z,€) = min{d'y | Wy = { — Dz, y > 0}

and

Q(z) = E¢[Q(z,§)].

Then Q(zx) is convex and continuous. So we have an equivalent pro-
gramming problem to (1).

3) VMIN F(z) = (91(2) + Q(), - , 9-(z) + Q(z))’
subject to z € K.

DEFINITION 1.6. ([2]) The vector z* is an efficient solution of

VMIN F(z) = (fi(z), -, fr(x))’
subject to z € K

if and only if there exists no ¢ € K such that f;(z) < fi(z*) for
i=1,---,r and such that for at least one 7, one has f;,(z) < fio(z*).
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DEFINITION 1.7. ([2]) The vector z* is a properly efficient solution
of

VMIN F(z) = (fi(z),--- , fr(z))’
subject to z € K

if and only if it is efficient and if there exists a scalar M > 0 such that
for each i and each = € K satisfying fi(z) < fi(z*), there exists at least

?\;e j such that f;(z*) < fj(z) and (fi(z*) — fi(z))/(f;(2) - f;(z")) <

We define an equivalent scalar-valued problem for the problem (1)
as follows;

T
(4) minimize Z)\ig,-(x) + Q(x)
=1
subject to = € K|,

where 37_ A =1, A; >0, i=1,---,r

CORORALLY 1.8. [1] z* is properly efficient in problem (3) if and
only if z* is optimal in problem (4) for some A with strictly positive
components.

2. Stability analysis

When we consider the stochastic programming problems, their sta-
bility with respect to the perturbations of the distributions of the un-
derlying random variables plays an essential role. And since the weight
parameter depends on decision makers, the stability with respect to
weight parameter is also important. So we investigate the stability of
the optimal solution set and optimal value functions to problem (4)
with respect to the weight parameter A and the probability measure u
by applying the analysis of D. Klatte.

Define for g € (1,00) and k € (0, 00),

o(R™0,k) = (ue o®™) | [ 1€ u(a) <k,
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where p(R™) is the set of all Borel probability measures on R™. We
restrict on p(R™; ¢, k) in our stability analysis and consider the weight
parameter space as a discrete probability measure space because of its
characteristics. Now we define suitable metrics on the weight parame-
ter space and probability measure space. Define the bounded Lipschitz
metric # on p(R™) as follows:

Bs) =sundl | g@nuiae)- [ oemae) | g: R~ R,

Il gllsL<1},
for any p and v € p(R™), where
_ | 9(6) —g(d) |
IlgllBL= S [9(é) | +21;1£3 TaEhH S
and
d(¢, &) = \/(51 —&)2+ -+ (bn — €n)?,
for

§= (§1)"’ agﬁ'&% é= (gla”' )éﬁl)'

Note that the metric 8 metrizes the topology of weak convergence
on p(R™). Let s be a random variable defined on the sample space
1= {s1,52,---,s,} and s; € R. Define a metric d on Q by

d(si,sj) =] 8; — Sj I .
Then (Q,d) is a metric space. We may treat A = {AeR" [T M=

1,X; > 0} as a discrete probability measure space on 2.
Define a metric d on A by

dAA0) = V(AL = Xo1)2+ (g — Ao2)2 + - + (Ar — Aor)2,

for any A, A, € A. Then (A,d) is a metric space and for any ¢ > 1,

ZT:A’I:'ISi ‘qSMq,

i=1
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where M = max{| s; || s; € Q}. Let A € A, p € p(R™;q,k) and ¢ > 1.
Then for z := (s,£) € 2 X R™ we obtain

r 2q
o VP10 = [ S22 o P el e

<ZA / 29(M29 + [|€]2%) ()

= 2q(M2q + k) < oo.
For q > 1 define a metric d on A x p(R™;g,k) by

d((A\ 1), (Mos o)) = d(A, Xo) + Bk, o) 7
Then (A x p(R™;q,k),d) is a metric space. We apply Theorem 1.4

to (T,d) = (A x p(R™;q,k),d). Take M(t) = K, fixed. Denote the
objective function by

Fla, 0 = > higi(z) + /R Qe &)n ()
i=1

Define an optimal value function ¢: A x p(R™;q,k) — R and an
optimal set function ¥: A x p(R™;q,k) — K by
oA p) = nf Fz,p),
P\ p)={z € K |F(z,\p) =oAu}
LEMMA 2.1. Let B C R" be a nonempty and compact set. Fix

(Ao, o) € A x p(R™; q,k) and assume that ()., o) is nonempty and
bounded. Then there exist p € (0,1], Ly > 0 such that

| F(Zo, Aoy o) ~ F(2, A, 1) |< Le(llz — 2o + d~((>" )5 Aoy 10))7),

for each z,x, € B and each (\, 1) € A X p(R™; q, k).
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Proof. We have

I F(xm}‘o,/‘l'o) - F(.’B, A ,U:) l
< | F(%o, Aoy o) = F(2, Moy o) | + | F(, oy o) = F(z, A, 1) |

<12Aozgz(xo)—ZAmgz<m 41 (@@ - Qe ) node)|

i=1

+ | Z/\ozgz(x) Z)‘zgz(“’) |

i=1

+|/ Q@O uolde) ~ [ Qe ulde) |

Now let ¢ = max{||c1][,-:- ,]|lcn]|} then we have
| Z Aoig'i,(:l:o) - ZAoigi(m) |S Z | Aoi “ gi(mo) - gz(x) |
=1 =1 i=1

”
SZ Avilleill | 2o — ||
i=1

<e ” Lo — T "a

by Cauchy-Schwarz inequality.

Since Q(z,-) is convex in X, Q(z,-) is Lipschitzian on B. Therefore
there exists some constant b > 0 such that

| [ (@@a&) - Q@) olde) 1B 20— .
Rv‘h

Since B is bounded, there exists § > 0 with p = max{ || z ||| z € B}
and we have

1D Xoigi(®) = D Aigi(@) IS | Xoi = Ai ] gs(2) |
i=1 i=1 i=1

<reff Ao — Al ],
<ref| A=Al P
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For the recourse part it is not hard to verify that for x € B, there
exists'M > 0 such that

| Q(,€) — Q,) |
<M -max{|d|| + € =Dz ||| dll + | - Dz ||} I ¢ -]l
<M-K-max{d|+ 1N+ EDI Il +1EN+1IDI}1E-E,
where K = max{1, 5}.

Taking L) =M -K-(|d||+ ]| D|)+ M - K - t, there exists C > 0
such that for all for ¢ > 1, we have

[ Qe mlde) - [ Q@ eu(ds)]

<C(1+ My() + My(o))B(k, o) 3,

where My(1) = (fam L1(ll € )2 u(d€))7, Li(t) = L(2) - t.

Therefore
| (20, Aos o) — F (@, A, ) |<S(E+ D) || Zo —z || +78B || Ao — A |
+ C(1 + My(p) + My(10))B(ps, o)~
<Lr(l| 7o — 2 || +d((\ 1), (Ko, 1)),

where _
Lr = max{e+b, rcp, C(1+ My(k) + My(1o))}- 0

Since for any fixed parameter (), u) problem (4) is a convex program-
ming problem, local optimal solutions and local optimal values are
global optimal solutions and global optimal values, respectively. We
are now ready to deduce our main result:

THEOREM 2.2. Consider problem (4). Fix (Ao, o) € Ax p(R™; q, k)
and assume that ()., tto) is nonempty and bounded. Then it follows
that:

(a) For each € > 0 there exists some n > 0 such that

¢'(’\1 H) C ¢()‘oa ﬂO) +e- Bna
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whenever (), 1) € A x p(R™; q,k) and d((\, 1), (Ao, 1o)) < 7.
(b) There exists positive reals 6, and L, such that

YA, ) #0
| <P(/\, ,u,) - (p(’\o’/*"o) | < L<P : J(()‘a »u')’ ()‘0’ II'O))v

whenever (A, 1) € A x p(R™;q,k) and d((A, 1), Doy o)) < G-

Proof. We check the conditions of Theorem 1.4.

(C1) : Since (), o) is a global minimizing solution set, ¥( Ao, o)
is a CLM set. And since ¥(\,, o) is bounded by assumption, (Ao, to)
is a bounded complete local minimizing set.

(C2) : M : Axp(R™q,k) — K, fixed valued. Then M is a
constant multifunction. Therefore M is closed valued and closed on
A x p(R™; g, k).

(C3) is trivially held.

(C4) : This is proved in Lemma 2.1. The proof is complete. O
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