• Title/Summary/Keyword: multi-classification

Search Result 1,225, Processing Time 0.031 seconds

An Object Oriented Approach for Multi-Channel and Multi-Polarization NASA/JPL POLSAR Image Classification

  • Tsay, Jaan-Rong;Lin, Chia-Chu
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.363-365
    • /
    • 2003
  • This paper presents an object oriented approach(OOA) for classification of multi-channel and multi-polarization NASA/JPL POLSAR images. Some test results in Taiwan are also given and analyzed. It is concluded that this approach can utilize as more information of both low- and high-levels involved in all images as possible for image classification and thus provides a better classification accuracy. For instance, the OOA has a better overall classification accuracy(98.27%) than the nearest-neighbor classifier(91.31%) and minimum-distance classifier(80.52%).

  • PDF

Multi -Criteria ABC Inventory Classification Using Context-Dependent DEA (컨텍스트 의존 DEA를 활용한 다기준 ABC 재고 분류 방법)

  • Park, Jae-Hun;Lim, Sung-Mook;Bae, Hye-Rim
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.33 no.4
    • /
    • pp.69-78
    • /
    • 2010
  • Multi-criteria ABC inventory classification is one of the most widely employed techniques for efficient inventory control, and it considers more than one criterion for categorizing inventory items into groups of different importance. Recently, Ramanathan (2006) proposed a weighted linear optimization (WLO) model for the problem of multi-criteria ABC inventory classification. The WLO model generates a set of criteria weights for each item and assigns a normalized score to each item for ABC analysis. Although the WLO model is considered to have many advantages, it has a limitation that many items can share the same optimal efficiency score. This limitation can hinder a precise classification of inventory items. To overcome this deficiency, we propose a context-dependent DEA based method for multi-criteria ABC inventory classification problems. In the proposed model, items are first stratified into several efficiency levels, and then the relative attractiveness of each item is measured with respect to less efficient ones. Based on this attractiveness measure, items can be further discriminated in terms of their importance. By a comparative study between the proposed model and the WLO model, we argue that the proposed model can provide a more reasonable and accurate classification of inventory items.

A Study on the Classification of Management of Multi-Family Housing (공동주택 관리업무의 체계적인 분류에 관한 연구)

  • Kwon, Myoung-Hee;Kim, Sun-Joong
    • Journal of the Korean housing association
    • /
    • v.24 no.1
    • /
    • pp.11-20
    • /
    • 2013
  • The purpose of the study was to develop a classification of management for the qualitative improvement of the management of multi-family housing. The date were analyzed using the Excel program in terms of frequency and, criticality analysis in order to draw items stage by stage. The process of research was as follows: The first process drew classification of types using the content analysis of the documented studies. The second process examined subcategories according to classification of types via interviews of supervisors. Further, the criticality analysis between the two items was examined. Additionally, when this study surveys and analyzes the satisfactions and importance of management on the basis of the classification, it can have an effect on management by reflecting the result. In conclusion, the classification of the management of multi-family housing will make up the improvement scheme of supplement education, certification related management and management regulations on the characteristics of multi-family housing by types of houses in the future.

Contribution to Improve Database Classification Algorithms for Multi-Database Mining

  • Miloudi, Salim;Rahal, Sid Ahmed;Khiat, Salim
    • Journal of Information Processing Systems
    • /
    • v.14 no.3
    • /
    • pp.709-726
    • /
    • 2018
  • Database classification is an important preprocessing step for the multi-database mining (MDM). In fact, when a multi-branch company needs to explore its distributed data for decision making, it is imperative to classify these multiple databases into similar clusters before analyzing the data. To search for the best classification of a set of n databases, existing algorithms generate from 1 to ($n^2-n$)/2 candidate classifications. Although each candidate classification is included in the next one (i.e., clusters in the current classification are subsets of clusters in the next classification), existing algorithms generate each classification independently, that is, without taking into account the use of clusters from the previous classification. Consequently, existing algorithms are time consuming, especially when the number of candidate classifications increases. To overcome the latter problem, we propose in this paper an efficient approach that represents the problem of classifying the multiple databases as a problem of identifying the connected components of an undirected weighted graph. Theoretical analysis and experiments on public databases confirm the efficiency of our algorithm against existing works and that it overcomes the problem of increase in the execution time.

A Comparison Study of Multiclass SVM Methods in Microarray Data

  • Hwang, Jin-Soo;Lee, Ji-Young;Kim, Jee-Yun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.2
    • /
    • pp.311-324
    • /
    • 2006
  • The Support Vector Machine(SVM) is very functional and efficient classification method to any other classification analysis method. However, its optimal extension to more than two classes is not obvious. In this paper several multi-category SVM methods are introduced and compared using simulation and real data sets. Also comparison with traditional multi-category classification and SVM based methods is performed.

  • PDF

Classification of Multi-temporal SAR Data by Using Data Transform Based Features and Multiple Classifiers (자료변환 기반 특징과 다중 분류자를 이용한 다중시기 SAR자료의 분류)

  • Yoo, Hee Young;Park, No-Wook;Hong, Sukyoung;Lee, Kyungdo;Kim, Yeseul
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.3
    • /
    • pp.205-214
    • /
    • 2015
  • In this study, a novel land-cover classification framework for multi-temporal SAR data is presented that can combine multiple features extracted through data transforms and multiple classifiers. At first, data transforms using principle component analysis (PCA) and 3D wavelet transform are applied to multi-temporal SAR dataset for extracting new features which were different from original dataset. Then, three different classifiers including maximum likelihood classifier (MLC), neural network (NN) and support vector machine (SVM) are applied to three different dataset including data transform based features and original backscattering coefficients, and as a result, the diverse preliminary classification results are generated. These results are combined via a majority voting rule to generate a final classification result. From an experiment with a multi-temporal ENVISAT ASAR dataset, every preliminary classification result showed very different classification accuracy according to the used feature and classifier. The final classification result combining nine preliminary classification results showed the best classification accuracy because each preliminary classification result provided complementary information on land-covers. The improvement of classification accuracy in this study was mainly attributed to the diversity from combining not only different features based on data transforms, but also different classifiers. Therefore, the land-cover classification framework presented in this study would be effectively applied to the classification of multi-temporal SAR data and also be extended to multi-sensor remote sensing data fusion.

Tuning the Architecture of Neural Networks for Multi-Class Classification (다집단 분류 인공신경망 모형의 아키텍쳐 튜닝)

  • Jeong, Chulwoo;Min, Jae H.
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.38 no.1
    • /
    • pp.139-152
    • /
    • 2013
  • The purpose of this study is to claim the validity of tuning the architecture of neural network models for multi-class classification. A neural network model for multi-class classification is basically constructed by building a series of neural network models for binary classification. Building a neural network model, we are required to set the values of parameters such as number of hidden nodes and weight decay parameter in advance, which draws special attention as the performance of the model can be quite different by the values of the parameters. For better performance of the model, it is absolutely necessary to have a prior process of tuning the parameters every time the neural network model is built. Nonetheless, previous studies have not mentioned the necessity of the tuning process or proved its validity. In this study, we claim that we should tune the parameters every time we build the neural network model for multi-class classification. Through empirical analysis using wine data, we show that the performance of the model with the tuned parameters is superior to those of untuned models.

Multi-granular Angle Description for Plant Leaf Classification and Retrieval Based on Quotient Space

  • Xu, Guoqing;Wu, Ran;Wang, Qi
    • Journal of Information Processing Systems
    • /
    • v.16 no.3
    • /
    • pp.663-676
    • /
    • 2020
  • Plant leaf classification is a significant application of image processing techniques in modern agriculture. In this paper, a multi-granular angle description method is proposed for plant leaf classification and retrieval. The proposed method can describe leaf information from coarse to fine using multi-granular angle features. In the proposed method, each leaf contour is partitioned first with equal arc length under different granularities. And then three kinds of angle features are derived under each granular partition of leaf contour: angle value, angle histogram, and angular ternary pattern. These multi-granular angle features can capture both local and globe information of the leaf contour, and make a comprehensive description. In leaf matching stage, the simple city block metric is used to compute the dissimilarity of each pair of leaf under different granularities. And the matching scores at different granularities are fused based on quotient space theory to obtain the final leaf similarity measurement. Plant leaf classification and retrieval experiments are conducted on two challenging leaf image databases: Swedish leaf database and Flavia leaf database. The experimental results and the comparison with state-of-the-art methods indicate that proposed method has promising classification and retrieval performance.

Sensibility Classification Algorithm of EEGs using Multi-template Method (다중 템플릿 방법을 이용한 뇌파의 감성 분류 알고리즘)

  • Kim Dong-Jun
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.12
    • /
    • pp.834-838
    • /
    • 2004
  • This paper proposes an algorithm for EEG pattern classification using the Multi-template method, which is a kind of speaker adaptation method for speech signal processing. 10-channel EEG signals are collected in various environments. The linear prediction coefficients of the EEGs are extracted as the feature parameter of human sensibility. The human sensibility classification algorithm is developed using neural networks. Using EEGs of comfortable or uncomfortable seats, the proposed algorithm showed about 75% of classification performance in subject-independent test. In the tests using EEG signals according to room temperature and humidity variations, the proposed algorithm showed good performance in tracking of pleasantness changes and the subject-independent tests produced similar performances with subject-dependent ones.

Application of Random Forests to Assessment of Importance of Variables in Multi-sensor Data Fusion for Land-cover Classification

  • Park No-Wook;Chi kwang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.3
    • /
    • pp.211-219
    • /
    • 2006
  • A random forests classifier is applied to multi-sensor data fusion for supervised land-cover classification in order to account for the importance of variable. The random forests approach is a non-parametric ensemble classifier based on CART-like trees. The distinguished feature is that the importance of variable can be estimated by randomly permuting the variable of interest in all the out-of-bag samples for each classifier. Two different multi-sensor data sets for supervised classification were used to illustrate the applicability of random forests: one with optical and polarimetric SAR data and the other with multi-temporal Radarsat-l and ENVISAT ASAR data sets. From the experimental results, the random forests approach could extract important variables or bands for land-cover discrimination and showed reasonably good performance in terms of classification accuracy.