DOI QR코드

DOI QR Code

Classification of Multi-temporal SAR Data by Using Data Transform Based Features and Multiple Classifiers

자료변환 기반 특징과 다중 분류자를 이용한 다중시기 SAR자료의 분류

  • Yoo, Hee Young (Geoinformatic Engineering Research Institute, Inha University) ;
  • Park, No-Wook (Department of Geoinformatic Engineering, Inha University) ;
  • Hong, Sukyoung (Climate Change & Agroecology Division, National Academy of Agricultural Science, Rural Development Administration) ;
  • Lee, Kyungdo (Climate Change & Agroecology Division, National Academy of Agricultural Science, Rural Development Administration) ;
  • Kim, Yeseul
  • 유희영 (인하대학교 공간정보공학연구소) ;
  • 박노욱 (인하대학교 공간정보공학과) ;
  • 홍석영 (농촌진흥청 국립농업과학원 기후변화생태과) ;
  • 이경도 (농촌진흥청 국립농업과학원 기후변화생태과) ;
  • 김예슬 (인하대학교 지리정보공학과)
  • Received : 2015.03.27
  • Accepted : 2015.06.05
  • Published : 2015.06.30

Abstract

In this study, a novel land-cover classification framework for multi-temporal SAR data is presented that can combine multiple features extracted through data transforms and multiple classifiers. At first, data transforms using principle component analysis (PCA) and 3D wavelet transform are applied to multi-temporal SAR dataset for extracting new features which were different from original dataset. Then, three different classifiers including maximum likelihood classifier (MLC), neural network (NN) and support vector machine (SVM) are applied to three different dataset including data transform based features and original backscattering coefficients, and as a result, the diverse preliminary classification results are generated. These results are combined via a majority voting rule to generate a final classification result. From an experiment with a multi-temporal ENVISAT ASAR dataset, every preliminary classification result showed very different classification accuracy according to the used feature and classifier. The final classification result combining nine preliminary classification results showed the best classification accuracy because each preliminary classification result provided complementary information on land-covers. The improvement of classification accuracy in this study was mainly attributed to the diversity from combining not only different features based on data transforms, but also different classifiers. Therefore, the land-cover classification framework presented in this study would be effectively applied to the classification of multi-temporal SAR data and also be extended to multi-sensor remote sensing data fusion.

이 연구에서는 자료변환기법을 이용해 추출된 여러 특징과 다양한 분류방법론을 결합하여 다중시기 SAR 자료를 위한 새로운 토지피복 분류기법을 제안하였다. 먼저, 다중시기 SAR 자료로부터 원본자료와는 다른 새로운 정보를 추출하기 위해 주성분분석과 3차원 웨이블렛 변환을 이용한 자료변환을 수행하였다. 그리고 나서 최대우도법 분류자, 신경망, support vector machine을 포함한 세 가지 다른 분류자를 변환된 특징자료들과 원본 후방산란계수 자료를 포함한 세가지 자료에 적용하여 다양한 초기 분류 결과를 얻도록 한다. 이후 다수결규칙을 통해 모든 초기결과를 결합하여 최종 분류 결과를 생성하게 된다. 다중시기 ENVISAT ASAR 자료를 이용한 사례연구에서 모든 초기 결과는 사용한 특징자료와 분류자의 종류에 따라 매우 다양한 분류정확도를 보였다. 이러한 9개의 초기 분류 결과를 결합한 최종 분류 결과는 가장 높은 분류 정확도를 보여주고 있는데, 이는 각 초기 분류 결과가 토지피복을 결정하기 위한 상호 보완적인 정보를 제공하기 때문이다. 이 연구에서의 분류정확도 향상은 주로 자료변환을 통해 얻어진 각기 다른 특징자료와 다른 분류자를 결합에 의한 다양성 확보에서 기인한다. 그러므로 이 연구에서 제안한 토지피복 분류방법론은 다중시기 SAR자료의 분류에 효과적으로 적용가능하며, 또한 다중센서 원격탐사 자료융합으로 확장이 가능하다.

Keywords

References

  1. Ainsworth, T.L., J.P. Kelly, and J.-S. Lee, 2009. Classification comparisons between dual-pol, compact polarimetric and quad-pol SAR imagery, ISPRS Journal of Photogrammetry and Remote Sensing, 64(5): 464-471. https://doi.org/10.1016/j.isprsjprs.2008.12.008
  2. Angiulli, G., V. Barrile, and M. Cacciola, 2005. SAR imagery classification using multi-class support vector machines, Journal of Electromagnetic Waves and Applications, 19(14): 1865-1872. https://doi.org/10.1163/156939305775570558
  3. Ashutosh, S., 2002. Principal component-based algorithm on multispectral remote sensing data for spectral discrimination of tree cover from other vegetation types, Current Science, 82(1): 67-69.
  4. Bruzzone, L., D.F. Prieto, and S.B. Serpico, 1999. A neural-statistical approach to multitemporal and multisource remote-sensing image classification, IEEE Transactions on Geoscience and Remote Sensing, 37(3): 1350-1359. https://doi.org/10.1109/36.763299
  5. Burges, C.J.C., 1998. A tutorial on support vector machines for pattern recognition, Data Mining and Knowledge Discovery, 2: 121-167. https://doi.org/10.1023/A:1009715923555
  6. Camps-Valls, G. and L. Bruzzone, 2005. Kernel-based methods for hyperspectral image classification, IEEE Transactions on Geoscience and Remote Sensing, 43(6): 1351-1362. https://doi.org/10.1109/TGRS.2005.846154
  7. Defries, R.S. and A.S. Belward, 2000. Global and regional land cover characterization from satellite data: An introduction to the Special Issue, International Journal of Remote Sensing, 21(6-7): 1083-1092. https://doi.org/10.1080/014311600210083
  8. Fukada, S. and H. Hirosawa, 2001. Support vector machine classification of land cover: Application to polarimetric SAR data, Proc. of 2001 International Geoscience and Remote Sensing Symposium, Sydney, Australia, Jul. 9-13, pp. 187-189.
  9. Henebry, G.M., 1997. Advantages of principal components analysis for land cover segmentation from SAR image series, Proc. of the third ERS symposium, Florence, Italy, Mar. 21-26, sp-414, pp. 175-178.
  10. Hepner, G.F., T. Logan, N. Ritter, and N. Bryant, 1989. Artificial neural network classification using a minimal training set: Comparison to conventional supervised classification, Photogrammetric Engineering and Remote Sensing, 56(4): 469-473.
  11. Hirosawa, Y., S.E. Marsh, and D.H. Kliman, 1996. Application of standardized principal component analysis to land-cover characterization using multitemporal AVHRR Data, Remote Sensing of Environment, 58(3): 267-281. https://doi.org/10.1016/S0034-4257(96)00068-5
  12. Jang, M.-W., Y.-H. Kim, N.-W. Park, and S.-Y. Hong, 2012. Mapping paddy rice varieties using multitemporal RADARSAT SAR images, Korean Journal of Remote Sensing, 28(6): 653-660. https://doi.org/10.7780/kjrs.2012.28.6.5
  13. Kuncheva, L.I., 2004. Combining Pattern Classifiers, Wiley, Hoboken, NJ, USA.
  14. Lee, J.-S., M.R. Grunes, T.L. Ainsworth, L.J. Du, D.L. Schuler, and S.R. Cloude, 1999. Unsupervised classification using polarimetric decompositions and the complex wishart classifier, IEEE Transactions on Geoscience and Remote Sensing, 37(5): 2249-2258. https://doi.org/10.1109/36.789621
  15. Muraki, S., 1993. Volume data and wavelet transforms, IEEE Computer Graphics and Applications, 13(4): 50-56. https://doi.org/10.1109/38.219451
  16. Park, N.-W., H.Y. Yoo, Y. Kim, and S.-Y. Hong, 2012. Classification of remote sensing data using random selection of training data and multiple classifiers, Korean Journal of Remote Sensing, 28(5): 489-499. https://doi.org/10.7780/kjrs.2012.28.5.2
  17. Park, N.-W. and K.H. Chi, 2008. Integration of multitemporal/polarization C-band SAR data sets for land-cover classification, International Journal of Remote Sensing, 29(16): 4667-4688. https://doi.org/10.1080/01431160801947341
  18. Petrakos, M., J.A. Benediktsson, and I. Kanellopoulos, 2001. The effect of classifier agreement on the accuracy of the combined classifier in decision level fusion, IEEE Transactions on Geoscience and Remote Sensing, 39(11): 2539-2546. https://doi.org/10.1109/36.964992
  19. Serpico, S.B., L. Bruzzone, and F. Roli, 1996. An experimental comparison of neural and statistical non-parametric algorithms for supervised classification of remote-sensing images, Pattern Recognition Letters, 17(13): 1331-1341. https://doi.org/10.1016/S0167-8655(96)00090-6
  20. Skriver, H., J. Schou, and W. Dierking, 2000. Landcover mapping using multitemporal, dualfrequency polarimetric SAR data, Proc. of 2000 International Geoscience and Remote Sensing Symposium, Honolulu, HI, Jul. 24-28, vol.1, pp. 331-333.
  21. Sunar, F., 1998. An analysis of changes in a multidate data set: a case study in the Ikitelli area, Istanbul, Turkey, International Journal of Remote Sensing, 19(2): 225-235. https://doi.org/10.1080/014311698216215
  22. Tan, C.-P., J.-Y. Koay, K..-S. Lim, H.-T. Ewe, and H.-T. Chuah, 2007. Classification of multi-temporal SAR images for rice crops using combined entropy decomposition and support vector machine technique, Progress In Electromagnetics Research, 71: 19-39. https://doi.org/10.2528/PIER07012903
  23. Yoo, H.Y., N.-W. Park, S. Hong, K. Lee, and Y. Kim, 2013. Feature extraction and classification of multi-temporal SAR data using 3D wavelet transform, Korean Journal of Remote Sensing, 29(5): 569-579. https://doi.org/10.7780/kjrs.2013.29.5.12

Cited by

  1. 객체분할과 과거 토지피복 정보를 이용한 토지피복도 갱신 vol.33, pp.6, 2015, https://doi.org/10.7780/kjrs.2017.33.6.2.5