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Application of Random Forests to Assessment of Importance
of Variables in Multi-sensor
Data Fusion for Land-cover Classification
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Abstract : A random forests classifier is applied to multi-sensor data fusion for supervised land-cover
classification in order to account for the importance of variable. The random forests approach is a non-
parametric ensemble classifier based on CART-like trees. The distinguished feature is that the importance of
variable can be estimated by randomly permuting the variable of interest in all the out-of-bag samples for
each classifier. Two different multi-sensor data sets for supervised classification were used to illustrate the
applicability of random forests: one with optical and polarimetric SAR data and the other with multi-
temporal Radarsat-1 and ENVISAT ASAR data sets. From the experimental results, the random forests
approach could extract important variables or bands for land-cover discrimination and showed reasonably

good performance in terms of classification accuracy.
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1. Introduction

Since the 1990s, the use of muiti-sensor remote
sensing data has been gaining increased interests in
remote sensing communities. The forthcoming ranges
of hyperspectral data, recently available high
resolution data (e.g. pixel resolution of 1m or less)
and polarimetric SAR data from several space-borne
platforms, such as KOMPSAT-2, ALOS, Radarsat-2,
will provide us with unprecedented opportunity for
Earth observation tasks.

To make optimized decisions, better use must be

made of all available information acquired from
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different sensors or sources. Remote sensing data
acquired over the same site by different sensors are,
in general, partially redundant or complementary,
since they have different characteristics and physical
interaction. Multi-sensor data fusion may help in the
extraction of more information with higher accuracy
and less uncertainty. In case of land-cover
classification, all land-cover classes in each image
may not be distinguishable. If complementary
information provided by different sensors can be
combined in a data fusion framework, separation
between various land-cover classes can be achieved
more effectively (Park, 2004).
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Several methodologies for multi-sensor data fusion
have been tested and refined with rigorous theoretical
backgrounds. The main approaches to data fusion in
the remote sensing literature are statistical methods
(Solberg et al., 1996), Dempster-Shafer theory of
evidence (Le Hégarat-Mascle ef al., 1997), fuzzy set
theory (Solaiman ef al., 1999) and neural network
(Serpico et al., 1996).

Unlike the situation where single sensor data are
only dealt with, however, one of the most serious
problems faced in multi-sensor data fusion is the
information content and relative reliability of each
sensor (Park, 2004). Since data come from various
sensors, the data inevitably have varying degrees of
reliabilities for targets. Hence the relative reliabilities
and uncertainties of the sensors should be properly
accounted for during data fusion processes.

To account for relative reliability or importance,
this paper applies random forests to multi-sensor data
fusion for land-cover classification. The random
forests approach is one of ensemble methods and a
non-parametric one and thus it can be effectively
applied to multi-sensor data fusion. By randomly
deleting the information contained in a certain
variable in the out-of-bag samples for each classifier,
especially, the importance of variable can be
éomputed. The potentiality of the methods was
evaluated from two experiments for land-cover

classification with multi-sensor data.

2. Random Forests

Random forests are the general term of an
ensemble method for classification and regression
and are a combination of tree-structured classifiers
such that each tree depends on the values of a random
vector sampled independently and with the same
distribution for all trees in the forest (Breiman, 2001).

Random forests can be categorized into two types:
one is a classification and regression tree (CART)-
like trees type (Breiman et al., 1984) and the other is
a binary hierarchy classifier (Ham et al., 2005). The
main difference of those two lies in the splitting
manner on each node. The splitting manner of the
CART-like trees approach is based on variables or
features. Meanwhile, in the binary hierarchy
classifier, a split on each node is based on classes or
labels. In this paper, the random forests approach
based on CART-like trees will be only dealt with.
Unless stated otherwise, the description and
explanation of random forests used in this paper
largely follows Breiman (2001). Detailed explanation
of CART-like trees type will not be given in this
paper and only brief description and main advantage
for data fusion will be discussed.

For the purpose of classification of multi-
sensor/source data, the random forests can deal with
both large data sets and categorical data efficiently.
The algorithm is the collection of tree predictors and
grows each tree on an independent bootstrap sample
from the training data. Suppose there are M variables
or sensors for classification. At each node, first, m
variables out of all M possible variables are randomly
selected. Then the best split on the selected m
variables will be found. After that, the tree is grown
to maximum depth and a large number of trees vote
for the most popular class. Finally, the majority class
will be a final output. The way of growing the trees is
based on low bias and low correlation in order to
improve accuracy. The forests considered consist of
using randomly selected inputs or combinations of
inputs at each node to grow each tree. By limited use
of variables for a split, the computational load can be
reduced and as a result large volumes of data sets can
be handled (Gislason er al., 2004; Joelsson et al.,
2005).

Main advantage of the random forests approach is
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that it can provide several analytical results by using
out-of-bag samples. As mentioned before, a bootstrap
sample for the data is selected for each tree in the
forest and then used to grow the tree. The out-of-bag
samples mean the remaining samples that are not
selected as the bootstrap ones. They can serve as a
test set for the tree grown on the bootstrap samples
and be used for the estimation of the forest test set
error and variable importance. For each tree the out-
of-bag samples are put down the corresponding tree
and a predicted class that is chosen the most often is
obtained. Then, the classification error is computed
by comparing the predicted class with the true class.
By averaging the classification error over all cases,
the overall out-of-bag error or test set error can be
obtained (Breiman, 2001).

Especially, variable importance can be computed
by using the out-of-bag samples. The computation
procedure is as follows: When considering a single
tree, first, a tree is used to predict the class of each
out-of-bag sample. Then, the values of the variable of
interest will be randomly permuted in all the out-of-
bag samples and the tree is used to predict the class
for these perturbed out-of-bag samples. The variable
importance is the increase in the misclassification or
error rate between those two steps. It means that by
randomly deleting or destroying a certain variable
from the whole variables in the out-of-bag samples
for each classifier, the increase in the out-of-bag error
indicates that the variable deleted is important, since
its removal tesults in the increase of error rate. The
importance of a certain variable is averaged over all

trees in the forest.

3. Experiments

Two experiments for supervised classification with

multi-sensor data sets are carried out to evaluate the

applicability of the random forests. The first
experiment is done for the fusion of optical and multi-
frequency polarimetric SAR data and the second one
for the fusion of multi-temporal/polarization SAR
data. For the implementation of random forests, a
Fortran program that can be freely available from a
random forests webpage (http://oz.berkeley.edu/
users/breiman/RandomForests/) was used.

1) Fusion of Optical and Polarimetric SAR
Data

The multi-sensor data set (grss-dfc-0006) used in
the experiment for supervised land-cover
classification was provided by the IEEE GRSS Data
Fusion Committee (http://www.dfc-grss.org). It
includes airborne Thematic Mapper Scanmner data
with 6 channels and NASA JPL AirSAR data with 9
channels in the C-, L- and P-bands and HH, HV and
VV polarizations. Five land-cover classes in an
agricultural area are considered: (1) sugar beets, (2)
stubble, (3) bare soil, (4) potatoes, (5) carrots.
Detailed description of the data sets can be found in
Serpico et al.(1996) and Park (2004). For the random
forests, the number of random splits was set to 4 and
the trees in the forest were grown to 50.

The importance of variables is shown in Fig. 1. All
importance values were normalized to express the

relative ones with respect to the maximum. If the

Relative importance (%)
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Fig. 1. Results of importance of variable computation in the
first experiment.
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average increased out-of-bag error value is large, the
variable can be considered more important. As
expected, infrared bands, ATM4, ATMS5 and ATM6,
are the most important variables. In addition, L-band
data, HV, VV, HH, showed relatively higher values
than other C- and P-band SAR data. This outcome
resulted in the penetrating depth related to
wavelength of the SAR sensor. It means that L-band
has the proper amount of penetration power and can

reveal better discrimination capability of scattering

Sugar beets

Relative importance (%)
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characteristics between crop classes. Furthermore, the
importance of variable for each land-cover class was
also computed and is shown in Fig. 2. Like the case
of the whole importance values, the contribution of
optical data is dominant than those of SAR data. L-
band polarimetric data however played a major role
in the discrimination of potatoes class. The final
classification result is also given in Fig. 3.

Finally, the performance of the random forests

approach was compared with previous results

Stubble

Relative importance (%)
w
8

0
FESIFL S ST TS F &
SEES FESE e

Variable

ﬁ Bare soil

Relative importance (%)

ﬁ\é&@‘pé&gﬁ&&&&&&&&&

Variable

Potatoes

Relative importance (%)
w
3

o L -

LS IF TS ST IS S
SEESS FISELd

Variable

Carrots

Relative importance (%)

PR LRSS E TS E S
@Sp%&%@\y@oo@vvw‘l‘l@

Variable

Fig. 2. Results of importance of variable for each class in the first experiment.
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Fig. 3. Classification result of the first experiment.

Table 1. Accuracy statistics of the first experiment. PNNs and
k-nn results are quoted from Serpico et al.(1996).

e v

Sugar beets| 0.938 0.978 0.974
Stubble 0.948 0.824 0.884
accuracy Bare soil 0.705 0.796 0.760
Potatoes 0.869 0.818 0.864

Carrots 0.971 0.893 0.871

Overall accuracy 0.907 0.886 0.898
Average accuracy 0.886 0.862 0.871
Kappa statistic 0.877 0.850 0.869

User’s

obtained by different classification or fusion methods
to the same data sets and training/reference samples
(Serpico et al., 1996). In Serpico et al.(1996), the
probabilistic neural network(PNN) and k-nn method
were applied. For accuracy statistics, overall accuracy,
user’s accuracy, average accuracy and Kappa statistic
were computed by constructing a confusion matrix
(Table 1). The improvements for the stubble and
carrots classes were significant but the performance
for the bare soil class was poorer than PNN and k-nn
algorithms. Overall, random forests show similar or

mmproved classification performances.

2) Fusion of Multi-temporal Radarsat-1 and
ENVISAT ASAR Data

The second experiment was carried out in the

Table 2. Multi-temporal SAR data sets used in the second experiment.

Sensor | Date |
01.04.2005
25.04.2005
19.05.2005
12.06.2005
06.07.2005 | Ascending F2 HH
30.07.2005
23.08.2005
16.09.2005
10.10.2005
31.10.2004
09.01.2005
13.02.2003 Descending IS2 vy
20.03.2005

24.04.2005
29.05.2005
17.06.2005 | Descending IS1
03.07.2005
07.08.2005
11.09.2005
16.10.2005

Mode |

Radarsat-1

ENVISAT

ASAR VV & HH

VV & VH

Descending IS2 \'A%

Yedang plain, Korea. The data sets considered in the
second experiment include multi-temporal C-band
Radarsat-1 data (HH polarization) and ENVISAT
ASAR data (VV polarization) (Table 2). The
Radarsat-1 data acquired from April, 2005 to October,
2005 were used and ENVISAT ASAR data span a
whole year from October, 2004 to October, 2005.
Dual polarization data (VH and VV polarizations) of
ENVISAT ASAR acquired on a single date were
especially considered.

As for the SLC format data preprocessing,
coregistration, multi-looking, speckle filtering and
geocoding were carried out. Since the Radarsat-1 and
ENVISAT ASAR data were acquired from different
orbits, they showed the different imaging geometry.
To reduce the effect of topography on the
backscattering coefficient, geocoding with DEM
extracted from a 1:25,000 scale digital topographic

map of the study area was done. The lay over and
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shadow zones extracted during geocoding with DEM
were masked out throughout the data processing for
classification. Finally, the study area consists of 660
by 1300 pixels with a pixel size of 25m by 25m. Five
land-cover classes such as paddy fields, dry fields,
forest, water and urban were considered. For
supervised classification, training and reference sets
were collected during field survey from July, 2005 to
October, 2005. High-resolution optical data acquired
in April and June, 2006 were also used for
construction of the training and reference sets.

Before classification, first, a feature extraction step
was applied by considering the scattering properties
of multi-temporal SAR data. This study considered
three features including average backscattering
coefficient, temporal variability and long-term
coherence like previous researches (Strozzi et al.,
2000; Park et al., 2005). From the average
backscattering coefficient, water and urban areas can
be discriminated due to their very low and high
backscattering coefficient, respectively. Temporal
variability can be used to discriminate cultivated and
water areas from forest and urban areas in which the
temporal condition is relatively stable and thus the
temporal variability is low. It should be noted that the
relative intensity of temporal variability depends on

(@)

(b

the frequency, polarization incidence angles of the
SAR sensor considered. In previous researches
(Strozzi et al., 2000; Bruzzone et al., 2004), the
cultivated areas included paddy and dry fields.
Though the paddy and dry fields generally show
higher temporal variability than those of other classes,
intensity or property of temporal variability between
those two cultivated areas may be quite different due
to the different cultivation mechanism during the
plant growth cycle. In this experiment, the paddy and
dry fields were considered as the separated two land-
cover classes. The standard deviation values were
used as temporal variability factors and the paddy and
dry fields were considered as independent two land-
cover classes. As a final feature, long-term coherence
can be used for the discrimination of urban areas
where there are many permanent scatterers from other
classes.

The whole 9 Radarsat-1 data were used for the
extraction of the average backscattering coefficient
and temporal variability (Fig. 4. (a) and (b)). The
coherence maps of Radarsat-1 data were also
extracted from two interferometric pairs with 24 days
intervals and three pairs with 48 days intervals.
Finally, those coherence maps were averaged (Fig. 4.
(c)). Since ENVISAT ASAR data sets include

Fig. 4. Features extracted from muilti-temporal Radarsat-1 data sets: (a) average backscattering coefficient, (b) temporal variability,

(c) coherence.

-216-



Application of Random Forests 1o Assessment of Importance of Variables in Multi-sensor Data Fusion for Land-cover Classification
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Fig. 5. Features extracted from multi-temporal ENVISAT ASAR data sets: (a) average backscattering coefficient, (b) temporal

variability, (c) VH/VV ratio, (d) coherence.

different polarization and/or mode data, some data
were included or excluded. The average backscattering
coefficient and temporal variability were computed
from 10 data acquired from descending orbits with
IS2 mode (Fig. S. (a) and (b)). Only VV polarization
channel among dual polarization data acquired on
May 29, 2005 was used for those features. The ratio
of VH and VV channels (VH/VV) acquired on June
17, 2005 was considered as another feature (Fig. 5
(c)). For the ENVISAT ASAR data sets, two
interferometric pairs with 35 days intervals were
extracted and then averaged (Fig. 5 (d)). All features
used in random forests classification are listed in
Table 3. The number of random splits was set to 2
and the trees in the forest were grown to 50 like the
first experiment.

Fig. 6 shows the relative importance values
computed form the out-of-bag sample errors. The
final classification result is also shown in Fig. 7. The
temporal variability and average backscattering
coefficient of Radarsat-1 data sets showed the highest
importance values. Those features generally had
discrimination capabilities of paddy and water classes
from other ones. As shown in Fig. 7, the paddy class
occupied the large portion of the study area and thus

the contribution of the temporal variability and

Table 3. Features extracted for the second experiment.

Feature
Average backscattering coefficient of Radarsat-1 &
Temporal variability of Radarsat-1 R_temp
Coherence of Radarsat-1 R_coh
Average backscatteing coefficient of ENVISAT ASAR E_avg

' 'R avg

Temporal variability of ENVISAT ASAR E_temp

Coherence of ENVISAT ASAR E_coh

VH/VYV ratio of ENVISAT ASAR E_ratio
100

Relative importance (%)

R avg R_temp R_coh E_avg E_temp E_coh E_ratio

Features

Fig. 6. Relative importance values of all features used in the
second experiment.

average backscattering coefficient to discrimination
of the paddy class resulted in the highest importance
values. The average backscattering coefficient of
ENVISAT ASAR data sets is the next. The
superiority of the features from Radarsat-1 data to
those from ENVISAT ASAR data however does not
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Fig. 7. Classification result of the second experiment.

explain that HH polarization data always give us
more information than the VV polarization data in an
agricultural area. It should be noted that the results are
the combined results of various parameters such as
acquisition dates, incidence angle, mode, polarization
state, etc. The coherence values of both Radarsat-1
and ENVISAT ASAR data sets have little
contributions to discrimination of the land-cover
classes in the study area. It is worth noting that the
ratio between VH and VV polarization, which is a
feature to characterize the level of polarization
dependence, showed higher relative importance
values than those from the coherence values. In
general, the VH/VYV ratio can give different
information on agricultural fields and forests. That is,
Agricultural fields show an intermediate VH/VV
ratio and forests the highest VH/VV ratio of the
natural targets (Wegmiiller ef al., 2003). Though it
was extracted from one data acquired in July, the
VH/VY ratio could affect the discrimination between
dry fields and forests that showed mixed
characteristics in the average backscattering
coefficient. This experimental results confirm the
effectiveness of the multi-polarization capability of
ENVISAT ASAR data.

The classification accuracy results are given in

Table 4. The improvement of classification accuracy

Table 4. Accuracy statistics of the second experiment.

Class .
Paddy fields
Dry fields
User’s accuracy Forest 0.869
Water 0.999
Urban 0.957
Overall accuracy 0.943
Average accuracy 0918
Kappa statistic 0.909

in the dry fields is sustainable, compared with Park ez
al.(2005). The possible explanation is that the use of
multi-polarization data could give more information

on the discrimination of dry fields from other classes.

4. Conclusions

The random forests classifier for both the
classification of multi-sensor data and accounting for
the importance of variable has been applied in this
paper. The distinguished feature of the random forests
approach is its ability to estimate or compute the
importance of variable by using out-of-bag samples.
In two experiments, the random forests approach
could estimate which variable or feature played a
major role in discriminating the land-cover classes
considered. Also, it indicated a good classification
accuracy comparable to other non-parametric data
fusion algorithms. It is expected that the feature
selection based on the information on the importance
of variable in the random forests approach would be
effectively incorporated into hyperspectral data

classification.
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