• Title/Summary/Keyword: modified quadratic

Search Result 170, Processing Time 0.024 seconds

Development of an Optimum Hull Form for a Container Ship with Minimum Wave Resistance (최소 조파저항을 가지는 컨테이너선의 선형최적화 기법에 대한 연구)

  • 최희종;서광철;김방은;전호환
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.40 no.4
    • /
    • pp.8-15
    • /
    • 2003
  • This paper presents the method for developing an optimum hull form with minimum wave resistance using SQP(sequential quadratic programming) as an optimization technique. The wave resistance is evaluated by a Rankine source panel method with non-linear free surface conditions and the ITTC 1957 friction line is used to predict the frictional resistance coefficient. The geometry of the hull surface is represented and modified using B-spline surface patches. The optimization method is applied to Series 60 hull and KCS(KRISO 3600 TEU Container Ship). The obtained results prove that the method is appropriate for preliminary hull form design.

Hydrodynamic Hull Form Design Using an Optimization Technique

  • Park, Dong-Woo;Choi, Hee-Jong
    • International Journal of Ocean System Engineering
    • /
    • v.3 no.1
    • /
    • pp.1-9
    • /
    • 2013
  • A design procedure for a ship with minimum resistance had been developed using a numerical optimization method called SQP (Sequential Quadratic Programming) combined with computational fluid dynamics (CFD) technique. The frictional resistance coefficient was estimated by the ITTC 1957 model-ship correlation line formula and the wave-making resistance coefficient was evaluated by the potential-flow panel method with the nonlinear free surface boundary conditions. The geometry of the hull surface was represented and modified by B-spline surface modeling technique during the optimization process. The Series 60 ($C_B$=0.60) hull was selected as a parent hull to obtain an optimized hull that produces minimum resistance. The models of the parent and optimized hull forms were tested at calm water condition in order to demonstrate the validity of the proposed methodolgy.

Design of Self-Organizing Networks with Competitive Fuzzy Polynomial Neuron (경쟁적 퍼지 다항식 뉴론을 가진 자기 구성 네트워크의 설계)

  • Park, Ho-Sung;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2000.11d
    • /
    • pp.800-802
    • /
    • 2000
  • In this paper, we propose the Self-Organizing Networks(SON) based on competitive Fuzzy Polynomial Neuron(FPN) for the optimal design of nonlinear process system. The SON architectures consist of layers with activation nodes based on fuzzy inference rules. Here each activation node is presented as FPN which includes either the simplified or regression Polynomial fuzzy inference rules. The proposed SON is a network resulting from the fusion of the Polynomial Neural Networks(PNN) and a fuzzy inference system. The conclusion part of the rules, especially the regression polynomial uses several types of high-order polynomials such as liner, quadratic and modified quadratic. As the premise part of the rules, both triangular and Gaussian-like membership functions are studied. Chaotic time series data used to evaluate the performance of our proposed model.

  • PDF

Design of IIR Notch Filter for Removal of Baseline wander and Power Line Interference from ECG Signal

  • Chivapreecha, Sorawat;Dejhan, Kobchai;Yimman, Surapan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.848-851
    • /
    • 2005
  • This paper proposes a design of IIR notch filter with modified pole placements. The pole angle is derived from quadratic programming to find the appropriate pole position on the unit circle in z-plane in order to achieve the symmetry of the amplitude response. The simulation results are shown when compared with the conventional design technique. Moreover, it uses the TMS320C31 DSP chip for hardware implementation. Finally, the hardware implementation can be applied to removal of ECG baseline wander and elimination of AC power line interference in ECG signal.

  • PDF

Design of Genetic Algorithms-based Fuzzy Polynomial Neural Networks Using Symbolic Encoding (기호 코딩을 이용한 유전자 알고리즘 기반 퍼지 다항식 뉴럴네트워크의 설계)

  • Lee, In-Tae;Oh, Sung-Kwun;Choi, Jeoung-Nae
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.270-272
    • /
    • 2006
  • In this paper, we discuss optimal design of Fuzzy Polynomial Neural Networks by means of Genetic Algorithms(GAs) using symbolic coding for non-linear data. One of the major subject of genetic algorithms is representation of chromosomes. The proposed model optimized by the means genetic algorithms which used symbolic code to represent chromosomes. The proposed gFPNN used a triangle and a Gaussian-like membership function in premise part of rules and design the consequent structure by constant and regression polynomial (linear, quadratic and modified quadratic) function between input and output variables. The performance of the proposed model is quantified through experimentation that exploits standard data already used in fuzzy modeling. These results reveal superiority of the proposed networks over the existing fuzzy and neural models.

  • PDF

Input Constrained Receding Horizon $H_{\infty}$ Control : Quadratic Programming Approach

  • Lee, Young-Il
    • 전기의세계
    • /
    • v.49 no.9
    • /
    • pp.9-16
    • /
    • 2000
  • A receding horizon $H_{\infty}$ predictive control method is derived by solving a min-max problem in non-recursive forms. The min-max cost index is converted to a quadratic form which for systems with input saturation can be minimized using QP. Through the use of closed-loop prediction the prediction of states the use of closed-loop prediction the prediction of states in the presence of disturbances are made non-conservative and it become possible to get a tighter $H_{\infty}$ norm bound. Stability conditions and $H_{\infty}$ norm bounds on disturbance rejection are obtained in infinite horizon sence. Polyhedral types of feasible sets for sets and disturbances are adopted to deal with the input constraints. The weight selection procedures are given in terms of LMIs and the algorithm is formulated so that it can be solved via QP. This work is a modified version of an earlier work which was based on ellipsoidal type feasible sets[15].

  • PDF

Fuzzy Polynomial Neural Networks with Fuzzy Activation Node (퍼지 활성 노드를 가진 퍼지 다항식 뉴럴 네트워크)

  • Park, Ho-Sung;Kim, Dong-Won;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2946-2948
    • /
    • 2000
  • In this paper, we proposed the Fuzzy Polynomial Neural Networks(FPNN) model with fuzzy activation node. The proposed FPNN structure is generated from the mutual combination of PNN(Polynomial Neural Networks) structure and fuzzy inference system. The premise of fuzzy inference rules defines by triangular and gaussian type membership function. The fuzzy inference method uses simplified and regression polynomial inference method which is based on the consequence of fuzzy rule expressed with a polynomial such as linear, quadratic and modified quadratic equation are used. The structure of FPNN is not fixed like in conventional Neural Networks and can be generated. The design procedure to obtain an optimal model structure utilizing FPNN algorithm is shown in each stage. Gas furnace time series data used to evaluate the performance of our proposed model.

  • PDF

Multivariable constrained model-based predictive control with application to boiler systems (제약조건을 갖는 다변수 모델 예측제어기의 보일러 시스템 적용)

  • Son, Won-Gi;Gwon, O-Gyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.6
    • /
    • pp.582-587
    • /
    • 1997
  • This paper deals with the control problem under nonlinear boiler systems with noise, and input constraints. MCMBPC(Multivariable Constrained Model-Based Predictive Controller) proposed by Wilkinson et al.[10,11] is used and nominal model is modified in this paper in order to applied to nonlinear boiler systems with feed-forward terms. The solution of the cost function optimization constrained on input and/or output variables is achieved using quadratic programming, via singular value decomposition(SVD). The controller designed is shown to satisfy the constraints and to have excellent tracking performance via simulation applied to nonlinear dynamic drum boiler turbine model for 16OMW unit.

  • PDF

Design of Suboptimal Robust Kalman Filter via Linear Matrix Inequality (선형 행렬 부등식을 이용한 준최적 강인 칼만 필터의 설계)

  • Jin, Seung-Hee;Yoon, Tae-Sung;Park, Jin-Bae
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.5
    • /
    • pp.560-570
    • /
    • 1999
  • This paper formulates the suboptimal robust Kalman filtering problem into two coupled Linear Matrix Inequality (LMI) problems by applying Lyapunov theory to the augmented system which is composed of the state equation in the uncertain linear system and the estimation error dynamics. This formulations not only provide the sufficient conditions for the existence of the desired filter, but also construct the suboptimal robust Kalman filter. The proposed filter can guarantee the optimized upper bound of the estimation error variance for uncertain systems with parametric uncertainties in both the state and measurement matrices. In addition, this paper shows how the problem of finding the minimizing solution subject to Quadratic Matrix Inequality (QMI), which cannot be easily transformed into LMI using the usual Schur complement formula, can be successfully modified into a generic LMI problem.

  • PDF

Sheet Metal Forming Analysis with Planar Anisotropic Materials using a Modified Membrane Element considering Bending Effect (굽힘이 고려된 개량박막요소를 이용한 평면이방 박판금속 성형해석)

  • Choi, Tae-Hoon;Huh, Hoon
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.03a
    • /
    • pp.183-187
    • /
    • 1997
  • A membrane element is regarded as more preferable rather than other elements in the sense of its computing efficiency and the merit with respect to contact treatment. However, it cannot consider the bending effect during the deformation. Moreover, due to the characteristics of rolling process, sheet metal has anisotropy with respect to the direction in the plane. To take the bending effect into account, a modified membrane element was introduced and improved to consider planar anisotropic characteristics with the aid of Hill's quadratic criterion.

  • PDF