• Title/Summary/Keyword: modal frequency

Search Result 1,284, Processing Time 0.027 seconds

A Study on the Measurement Method for Improvement of Reliability for Heavy-Weight Floor Impact Sound Measurement (중량 바닥충격음 측정의 신뢰성 향상을 위한 측정방법 검토)

  • Joo, Moon-Ki;Park, Jong-Young;Yang, Kwan-Seop;Oh, Yang-Ki
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.4
    • /
    • pp.163-170
    • /
    • 2008
  • Most of receiving rooms for the measurement of floor impact sound have rectangular shapes with couple of meters of dimension, with reflective finishing, no furniture, no curtains. Modal overlaps in those condition are the major reason for the low reproducibility, and as a matter of course, the low credibility. It is the major purpose of this study that searching for a better measurement method which mitigate the effect of modal overlap on measurement. Two ways of methods are tested. One is the way described in ISO standards which enables controlling the room modes of receiving rooms, the other is the way which enables to get more precise spatial averages in receiving rooms with room modes. It is not easy maintaining the reverberation time of low frequency bands in the range between 1s and 2s, though it is proven to be effective controlling the room modes with base traps. Space-time average SPL's through combinations of rotating microphones are easy to measure, and have good consistencies with average SPL of entire receiving room.

Finite Element Analysis for the Development of Bone Surgery Piezoelectric Ultrasonic Medical Device and its Experimental Verification (골수술용 압전형 초음파 의료기기 개발을 위한 유한요소해석 및 이의 실험적 검증)

  • Song, Tae-Ha;Lee, Jung-Ho;Choi, Jong Kyun;Lee, Hee Won
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.5
    • /
    • pp.319-330
    • /
    • 2022
  • In this study, the optimal driving frequency was derived through finite element analysis (FEA) to optimize the developed piezoelectric ultrasonic medical devices(PUMD) for bone surgery. The core of the PUMD is the piezoelectric ceramic (PZT), which is a vibrator that generates vibration energy. The piezoelectric ceramic shows the maximum current value with respect to the input voltage at the resonance frequency, which generates the maximum mechanical vibration. In the past, various studies have been conducted related to the analysis of PUMD, but most of the research so far has been limited to free vibration analysis. However, in order to derive the accurate resonant frequency, the initial stress generated by bolt tightening in the bolt-clamped Langevin type transducer (BLT) must be considered. In this study, after designing a PUMD, the driving performance according to the bolt tightening value was analyzed through FEA, and this was experimentally verified. First, the resonance mode and frequency response were confirmed through modal and harmonic analysis at 20-40 kHz, which is known as the optimal driving frequency band of PUMD for bone surgery. In addition, the design of the PUMD was confirmed by checking the mechanical behavior of the tip and the piezoelectric ceramic at the resonant frequency. Consequentially, the characteristic evaluation was performed, and it was confirmed that the resonant frequency result derived through the FEA was reasonable. Through this study, we presented a more rational FEA method than before for BLT transducers. We expect that this will shorten the time and cost of developing a PUMD, and will enable the development of more stable and high-quality products.

Durability Design of the Thickness of Bicycle Frames (자전거 프레임 두께에 따른 내구 설계)

  • Han, Sang Geun;Chun, Se Young;Kang, Seong Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.6
    • /
    • pp.84-89
    • /
    • 2015
  • The thickness of a stable and economical frame has been designed in order to reduce costs. Therefore, this study applied structural analysis and vibration analysis based on a comparison of the thicknesses of frames. Four types of frames (1mm, 2mm, 3mm, and 5mm) were modeled on a bicycle frame that has a length of 842mm, a width of 100mm, and a height of 400.5mm, and all of these frames generated the stress and maximum deformation amount in the state and around the saddle. The maximum stress shown was 25.732 MPa in 1mm, 11.79 MPa in 2mm, and 8.2015 MPa in 3mm, and the maximum deformation amount shown was 0.063611mm in 1mm, 0.031978mm in 2mm, and 0.022319mm in 3mm. The natural frequency of the frame thicknesses 1mm, 2mm, and 3mm was estimated as within 270 Hz. The critical frequency of conditions of 3mm was the biggest at 118.1Hz compared with the 3-mm model; thus, 3mm was shown to have the most satisfactory resistance.

Structure Borne Noise Analysis of a Flexible Body in Multibody System (다물체계내 유연체의 구조기인 소음해석)

  • 김효식;김창부
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.11
    • /
    • pp.882-889
    • /
    • 2003
  • This paper presents the method for structure borne noise analysis of a flexible body in multibody system. The proposed method is the superposition method using the flexible multibody dynamic analysis and the finite element one. This method is executed in 3 steps. In the 1st step, time dependent quantities such as dynamic loads, modal coordinates and gross body motion of the flexible body are calculated through a flexible multibody dynamic analysis. And frequency response functions of those time dependent quantities are computed through Fourier transforms. In the 2nd step, acoustic pressure coefficients are obtained through structure-acoustic coupling analyses by the finite element method. In the final step, frequency responses of acoustic pressure at the acoustic nodes are recovered through linear superposition of frequency response functions with acoustic pressure coefficients. The accuracy of the proposed method is verified in the numerical example of a simple car model.

Dynamic Characteristics Analysis for the Online Monitoring System Designing KTX MRU and Improvement of the Stability Related Variable High Speed (고속열차 감속기의 상시감시시스템 설계 및 가변속주행시 안정성 향상을 위한 동특성해석)

  • Park, Byung Su;Kim, Jin Woo;Choi, Sang Rak;Song, Young Chun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.4
    • /
    • pp.301-307
    • /
    • 2013
  • MRU(motor reduction unit) for KTX is a assembled complex structure that is equipped with a lot of parts at the express train KTX and that is the core power source operating variable speeds. This study is recorded the dynamic characteristics analysis results tested by EMA which is done through the parts and assembly test, transient analysis and stoped train test in order to design the online monitoring system for KTX MRU. And the mode shapes result from critical vibration frequency explain the relation with variable speeds of express train over 250 km/hr. Also these variable speeds make variable operational frequencies at pinion, axle gear mesh frequency and normal bearing fault frequencies. As the specified speed can make resonance with natural frequencies of the MRU, for the train operating stability, this study also presents the MRU's critical speeds calculated by the each train speed.

Linear Analysis of Geared System with a Manual Transmission (수동 변속기 내 기어 선형해석을 통한 동역학적 해석)

  • Ahn, Min-Ju;Cho, Sung-Min;Yoon, Jong-Yun;Kim, Jun-Seong;Lyu, Sung-Ki
    • Journal of the Korean Society of Safety
    • /
    • v.22 no.5
    • /
    • pp.1-6
    • /
    • 2007
  • Vibro-impacts in manual transmissions result due to several nonlinearities such as multi-staged clutch characteristics and gear backlashes. For the sake of understanding the torsional system, one specific manual transmission with front engine and front wheel drive configuration is investigated with a linear model under the several assumptions substituting the nonlinear factors. First, this system is examined with the mathematical approaches by expressing the governing equations to find out the torsional motions. Second, this system is analyzed using the linear model in order to understand its modal and frequency response characteristics using eigensolution method and the FRF(Frequency Responses Function) analysis. Third, with the given results from the eigensolutions, several mode shapes are investigated related to the torsional motion characteristics. Fourth, the system characteristics with the FRFs are studied with the basic approach, with which the several key parameters will be suggested based upon the results in the further studies.

Optimal Vibration Control of a Plate Using Optical Fiber Sensor and Piezoelectric Actuator (광섬유 센서와 압전 작동기를 이용한 평판의 최적 진동 제어)

  • Kim, Do-Hyung;Han, Jae-Hung;Yang, Seung-Man;Kim, Dae-Hyun;Lee, In;Kim, Chun-Gon;Hong, Chang-Sun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.4
    • /
    • pp.294-301
    • /
    • 2002
  • Vibration control of a plate using an optical fiber sensor and a piezoelectric actuator is considered in the present study, An aluminum plate with attached Extrinsic Fabry-Perot Interferometer (EFPI) and piezoelectric actuator is prepared for experimental investigation. Vibration level of EFPI that can represent the mechanical strain without severe distortion Is validated by forced nitration experiment. A linear time invariant system model is constructed based on the experimentally obtained frequency responses, and an optimal controller is designed for the multi-modal vibration suppression. Control performance is presented in frequency and time domains. It is found that the nitration level of the first three modes can be greatly reduced. The effect of low-pass filtering used to eliminate high frequency noise on the stability and control performance is also considered.

Vibro-acoustic Analysis of Simplified Satellite Model by Using the Statistical Energy Analysis Technique (단순화된 위성체의 통계적 에너지 해석법을 이용한 음향-진동 연성 해석)

  • Jeong, Cheol-Ho;Ih, Jeong-Guon;Moon, Sang-Moo;Kim, Hong-Bae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.711-714
    • /
    • 2002
  • At the lift-off condition, the combustion and Jet noise of launch vehicle produces a severe acoustic environment and the acoustic loads may be damaging to paylaod and equipments. Prediction of the acoustic environment is thus needed to support the load-resistive design and test-qualification of components. Currently, such a high frequency problem is usually dealt with by using the SEA technique, for which the assumptions should match reasonably well with the vibro-acoustic condition of system. The subsystems of SEA model was composed of 16 flat plates, 8 L-shaped beams, and 2 acoustic cavities. The frequency range was 400 Hz - 4 kHz considering the modal parameter. The experiment was performed in a high intensity acoustic chamber, in which the diffuse acoustic field was assured. By comparing the SEA analysis and the experiments, the error less than 5 dB was observed.

  • PDF

Dynamic Test and Analysis of Multilevel Post-tensioned PSC Girder with Holed Web (중공부가 있는 다단계 긴장 PSC 거더의 동특성 실험 및 해석)

  • Park, Bong-Sik;Cho, Jae-Yeol;Han, Man-Yeob
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.11-12
    • /
    • 2010
  • PSC girder with holed web have several benefits. Most of all placing tendon anchorage in the holes can make prestressing forces be loaded stepwise. In addition it can reduce the self-weight of the beams and increase the span length of beams. And holed web might minimize the interference of view. In this study, a 50-meter long full scale multilevel post-tensioned PSC girder was fabricated and modal test was carried out. In order to obtain precise frequency response, vibration exciter was placed at the middle of the girder and excited with several frequencies. Natural frequency and damping ratio were evaluated from FFT and PSD using the obtained frequency response and compared with numerical analysis result.

  • PDF

Improved Structural Identification Method in Frequency Domain (구조물의 동특성추정을 위한 개선된 주파수영역 기법)

  • Hong, Kyu Seon;Yun, Chung Bang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.2
    • /
    • pp.1-10
    • /
    • 1993
  • Frequency response functions(FRF) are the most fundamental data for the frequency domain identifications of structural systems. In this paper, an improved method for estimating FRF's is presented. The new FRF estimator takes the weighted average of two conventional estimators, $H_1$(f) and $H_2$(f), utilizing the fact that $H_2$(f) gives more accurate estimate at resonance, while $H_1$(f) yields better results at antiresonances. Based on the estimated FRF's, the modal parameters of the structures, such as, natural frequencies, damping ratios and mode shapes, are also estimated. The effectiveness of the proposed method is investigated through numerical and experimental studies. The estimated results indicate that the proposed estimator gives more accurate results than other estimators.

  • PDF