• Title/Summary/Keyword: mixed norm space

Search Result 15, Processing Time 0.024 seconds

LIPSCHITZ TYPE CHARACTERIZATION OF FOCK TYPE SPACES

  • Hong Rae, Cho;Jeong Min, Ha
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.6
    • /
    • pp.1371-1385
    • /
    • 2022
  • For setting a general weight function on n dimensional complex space ℂn, we expand the classical Fock space. We define Fock type space $F^{p,q}_{{\phi},t}({\mathbb{C}}^n)$ of entire functions with a mixed norm, where 0 < p, q < ∞ and t ∈ ℝ and prove that the mixed norm of an entire function is equivalent to the mixed norm of its radial derivative on $F^{p,q}_{{\phi},t}({\mathbb{C}}^n)$. As a result of this application, the space $F^{p,q}_{{\phi},t}({\mathbb{C}}^n)$ is especially characterized by a Lipschitz type condition.

HOLOMORPHIC FUNCTIONS ON THE MIXED NORM SPACES ON THE POLYDISC

  • Stevic, Stevo
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.1
    • /
    • pp.63-78
    • /
    • 2008
  • We generalize several integral inequalities for analytic functions on the open unit polydisc $U^n={\{}z{\in}C^n||zj|<1,\;j=1,...,n{\}}$. It is shown that if a holomorphic function on $U^n$ belongs to the mixed norm space $A_{\vec{\omega}}^{p,q}(U^n)$, where ${\omega}_j(\cdot)$,j=1,...,n, are admissible weights, then all weighted derivations of order $|k|$ (with positive orders of derivations) belong to a related mixed norm space. The converse of the result is proved when, p, q ${\in}\;[1,\;{\infty})$ and when the order is equal to one. The equivalence of these conditions is given for all p, q ${\in}\;(0,\;{\infty})$ if ${\omega}_j(z_j)=(1-|z_j|^2)^{{\alpha}j},\;{\alpha}_j>-1$, j=1,...,n (the classical weights.) The main results here improve our results in Z. Anal. Anwendungen 23 (3) (2004), no. 3, 577-587 and Z. Anal. Anwendungen 23 (2004), no. 4, 775-782.

FOURIER TRANSFORM OF ANISOTROPIC MIXED-NORM HARDY SPACES WITH APPLICATIONS TO HARDY-LITTLEWOOD INEQUALITIES

  • Liu, Jun;Lu, Yaqian;Zhang, Mingdong
    • Journal of the Korean Mathematical Society
    • /
    • v.59 no.5
    • /
    • pp.927-944
    • /
    • 2022
  • Let $\vec{p}{\in}(0,\;1]^n$ be an n-dimensional vector and A a dilation. Let $H^{\vec{p}}_A(\mathbb{R}^n)$ denote the anisotropic mixed-norm Hardy space defined via the radial maximal function. Using the known atomic characterization of $H^{\vec{p}}_A(\mathbb{R}^n)$ and establishing a uniform estimate for corresponding atoms, the authors prove that the Fourier transform of $f{\in}H^{\vec{p}}_A(\mathbb{R}^n)$ coincides with a continuous function F on ℝn in the sense of tempered distributions. Moreover, the function F can be controlled pointwisely by the product of the Hardy space norm of f and a step function with respect to the transpose matrix of A. As applications, the authors obtain a higher order of convergence for the function F at the origin, and an analogue of Hardy-Littlewood inequalities in the present setting of $H^{\vec{p}}_A(\mathbb{R}^n)$.

Modal-based mixed vibration control for uncertain piezoelectric flexible structures

  • Xu, Yalan;Qian, Yu;Chen, Jianjun;Song, Gangbing
    • Structural Engineering and Mechanics
    • /
    • v.55 no.1
    • /
    • pp.229-244
    • /
    • 2015
  • H-infinity norm relates to the maximum in the frequency response function and H-infinity control method focuses on the case that the vibration is excited at the fundamental frequency, while 2-norm relates to the output energy of systems with the input of pulses or white noises and 2-norm control method weighs the overall vibration performance of systems. The trade-off between the performance in frequency-domain and that in time-domain may be achieved by integrating two indices in the mixed vibration control method. Based on the linear fractional state space representation in the modal space for a piezoelectric flexible structure with uncertain modal parameters and un-modeled residual high-frequency modes, a mixed dynamic output feedback control design method is proposed to suppress the structural vibration. Using the linear matrix inequality (LMI) technique, the initial populations are generated by the designing of robust control laws with different H-infinity performance indices before the robust 2-norm performance index of the closed-loop system is included in the fitness function of optimization. A flexible beam structure with a piezoelectric sensor and a piezoelectric actuator are used as the subject for numerical studies. Compared with the velocity feedback control method, the numerical simulation results show the effectiveness of the proposed method.

NORMAL WEIGHTED BERGMAN TYPE OPERATORS ON MIXED NORM SPACES OVER THE BALL IN ℂn

  • Avetisyan, Karen L.;Petrosyan, Albert I.
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.2
    • /
    • pp.313-326
    • /
    • 2018
  • The paper studies some new ${\mathbb{C}}^n$-generalizations of Bergman type operators introduced by Shields and Williams depending on a normal pair of weight functions. We find the values of parameter ${\beta}$ for which these operators are bounded on mixed norm spaces L(p, q, ${\beta}$) over the unit ball in ${\mathbb{C}}^n$. Moreover, these operators are bounded projections as well, and the images of L(p, q, ${\beta}$) under the projections are found.

Signomial Classification Method with 0-regularization (L0-정규화를 이용한 Signomial 분류 기법)

  • Lee, Kyung-Sik
    • IE interfaces
    • /
    • v.24 no.2
    • /
    • pp.151-155
    • /
    • 2011
  • In this study, we propose a signomial classification method with 0-regularization (0-)which seeks a sparse signomial function by solving a mixed-integer program to minimize the weighted sum of the 0-norm of the coefficient vector of the resulting function and the $L_1$-norm of loss caused by the function. $SC_0$ gives an explicit description of the resulting function with a small number of terms in the original input space, which can be used for prediction purposes as well as interpretation purposes. We present a practical implementation of $SC_0$ based on the mixed-integer programming and the column generation procedure previously proposed for the signomial classification method with $SL_1$-regularization. Computational study shows that $SC_0$ gives competitive performance compared to other widely used learning methods for classification.

AN UPSTREAM PSEUDOSTRESS-VELOCITY MIXED FORMULATION FOR THE OSEEN EQUATIONS

  • Park, Eun-Jae;Seo, Boyoon
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.1
    • /
    • pp.267-285
    • /
    • 2014
  • An upstream scheme based on the pseudostress-velocity mixed formulation is studied to solve convection-dominated Oseen equations. Lagrange multipliers are introduced to treat the trace-free constraint and the lowest order Raviart-Thomas finite element space on rectangular mesh is used. Error analysis for several quantities of interest is given. Particularly, first-order convergence in $L^2$ norm for the velocity is proved. Finally, numerical experiments for various cases are presented to show the efficiency of this method.

ON THE MIXED RADIAL-ANGULAR INTEGRABILITY OF LITTLEWOOD-PALEY FUNCTIONS

  • Zhang, Xiao
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.2
    • /
    • pp.403-417
    • /
    • 2021
  • This note is devoted to establishing the boundedness for some classes of Littlewood-Paley square operators defined by the kernels without any regularity on the mixed radial-angular spaces. The corresponding vector-valued versions are also presented. As applications, the corresponding results for the Littlewood-Paley g∗λ function and the Littlewood-Paley function related to the area integrals are also obtained.

FOURIER-BESSEL TRANSFORMATION OF MEASURES WITH SEVERAL SPECIAL VARIABLES AND PROPERTIES OF SINGULAR DIFFERENTIAL EQUATIONS

  • Muravnik, A.B.
    • Journal of the Korean Mathematical Society
    • /
    • v.37 no.6
    • /
    • pp.1043-1057
    • /
    • 2000
  • This paper is devoted to the investigation of mixed Fourier-Bessel transformation (※Equations, See Full-text) We apply the method of [6] which provides the estimate for weighted L(sub)$\infty$-norm of the spherical mean of │f│$^2$ via its weighted L$_1$-norm (generally it is wrong without the requirement of the non-negativity of f). We prove that in the case of Fourier-Bessel transformatin the mentioned method provides (in dependence on the relation between the dimension of the space of non-special variables n and the length of multiindex ν) similar estimates for weighted spherical means of │f│$^2$, the allowed powers of weights are also defined by multiindex ν. Further those estimates are applied to partial differential equations with singular Bessel operators with respect to y$_1$, …, y(sub)m and we obtain the corresponding estimates for solutions of the mentioned equations.

  • PDF

A GENERALIZATION OF A RESULT OF CHOA ON ANALYTIC FUNCTIONS WITH HADAMARD GAPS

  • Stevic Stevo
    • Journal of the Korean Mathematical Society
    • /
    • v.43 no.3
    • /
    • pp.579-591
    • /
    • 2006
  • In this paper we obtain a sufficient and necessary condition for an analytic function f on the unit ball B with Hadamard gaps, that is, for $f(z)\;=\;{\sum}^{\infty}_{k=1}\;P_{nk}(z)$ (the homogeneous polynomial expansion of f) satisfying $n_{k+1}/n_{k}{\ge}{\lambda}>1$ for all $k\;{\in}\;N$, to belong to the weighted Bergman space $$A^p_{\alpha}(B)\;=\;\{f{\mid}{\int}_{B}{\mid}f(z){\mid}^{p}(1-{\mid}z{\mid}^2)^{\alpha}dV(z) < {\infty},\;f{\in}H(B)\}$$. We find a growth estimate for the integral mean $$\({\int}_{{\partial}B}{\mid}f(r{\zeta}){\mid}^pd{\sigma}({\zeta})\)^{1/p}$$, and an estimate for the point evaluations in this class of functions. Similar results on the mixed norm space $H_{p,q,{\alpha}$(B) and weighted Bergman space on polydisc $A^p_{^{\to}_{\alpha}}(U^n)$ are also given.