DOI QR코드

DOI QR Code

FOURIER TRANSFORM OF ANISOTROPIC MIXED-NORM HARDY SPACES WITH APPLICATIONS TO HARDY-LITTLEWOOD INEQUALITIES

  • Liu, Jun (School of Mathematics Chain University of Mining and Technology) ;
  • Lu, Yaqian (School of Mathematics Chain University of Mining and Technology) ;
  • Zhang, Mingdong (School of Mathematical Sciences Beijing Normal University)
  • Received : 2021.12.10
  • Accepted : 2022.07.11
  • Published : 2022.09.01

Abstract

Let $\vec{p}{\in}(0,\;1]^n$ be an n-dimensional vector and A a dilation. Let $H^{\vec{p}}_A(\mathbb{R}^n)$ denote the anisotropic mixed-norm Hardy space defined via the radial maximal function. Using the known atomic characterization of $H^{\vec{p}}_A(\mathbb{R}^n)$ and establishing a uniform estimate for corresponding atoms, the authors prove that the Fourier transform of $f{\in}H^{\vec{p}}_A(\mathbb{R}^n)$ coincides with a continuous function F on ℝn in the sense of tempered distributions. Moreover, the function F can be controlled pointwisely by the product of the Hardy space norm of f and a step function with respect to the transpose matrix of A. As applications, the authors obtain a higher order of convergence for the function F at the origin, and an analogue of Hardy-Littlewood inequalities in the present setting of $H^{\vec{p}}_A(\mathbb{R}^n)$.

Keywords

Acknowledgement

This research was financially supported by the Natural Science Foundation of Jiangsu Province (Grant No. BK20200647), the National Natural Science Foundation of China (Grant No. 12001527) and the Project Funded by China Postdoctoral Science Foundation (Grant No. 2021M693422).

References

  1. M. Bownik, Anisotropic Hardy spaces and wavelets, Mem. Amer. Math. Soc. 164 (2003), no. 781, vi+122 pp. https://doi.org/10.1090/memo/0781
  2. M. Bownik and L.-A. D. Wang, Fourier transform of anisotropic Hardy spaces, Proc. Amer. Math. Soc. 141 (2013), no. 7, 2299-2308. https://doi.org/10.1090/S0002-9939-2013-11623-0
  3. A.-P. Calderon and A. Torchinsky, Parabolic maximal functions associated with a distribution, Advances in Math. 16 (1975), 1-64. https://doi.org/10.1016/0001-8708(75)90099-7
  4. T. Chen and W. Sun, Iterated weak and weak mixed-norm spaces with applications to geometric inequalities, J. Geom. Anal. 30 (2020), no. 4, 4268-4323. https://doi.org/10.1007/s12220-019-00243-x
  5. T. Chen and W. Sun, Extension of multilinear fractional integral operators to linear operators on mixed-norm Lebesgue spaces, Math. Ann. 379 (2021), no. 3-4, 1089-1172. https://doi.org/10.1007/s00208-020-02105-2
  6. T. Chen and W. Sun, Hardy-Littlewood-Sobolev inequality on mixed-norm Lebesgue spaces, J. Geom. Anal. 32 (2022), no. 3, Paper No. 101, 43 pp. https://doi.org/10.1007/s12220-021-00855-2
  7. G. Cleanthous and A. G. Georgiadis, Mixed-norm α-modulation spaces, Trans. Amer. Math. Soc. 373 (2020), no. 5, 3323-3356. https://doi.org/10.1090/tran/8023
  8. G. Cleanthous, A. G. Georgiadis, and M. Nielsen, Anisotropic mixed-norm Hardy spaces, J. Geom. Anal. 27 (2017), no. 4, 2758-2787. https://doi.org/10.1007/s12220-017-9781-8
  9. G. Cleanthous, A. G. Georgiadis, and M. Nielsen, Molecular decomposition of anisotropic homogeneous mixed-norm spaces with applications to the boundedness of operators, Appl. Comput. Harmon. Anal. 47 (2019), no. 2, 447-480. https://doi.org/10.1016/j.acha.2017.10.001
  10. R. R. Coifman, Characterization of Fourier transforms of Hardy spaces, Proc. Nat. Acad. Sci. U.S.A. 71 (1974), 4133-4134. https://doi.org/10.1073/pnas.71.10.4133
  11. L. Colzani, Fourier transform of distributions in Hardy spaces, Boll. Un. Mat. Ital. A (6) 1 (1982), no. 3, 403-410.
  12. C. Fefferman and E. M. Stein, Hp spaces of several variables, Acta Math. 129 (1972), no. 3-4, 137-193. https://doi.org/10.1007/BF02392215
  13. J. Garcia-Cuerva and V. I. Kolyada, Rearrangement estimates for Fourier transforms in Lp and Hp in terms of moduli of continuity, Math. Nachr. 228 (2001), 123-144. https://doi.org/10.1002/1522-2616(200108)228:1<123::aid-mana123>3.0.co;2-a
  14. A. G. Georgiadis, G. Kyriazis, and P. Petrushev, Product Besov and Triebel-Lizorkin spaces with application to nonlinear approximation, Constr. Approx. 53 (2021), no. 1, 39-83. https://doi.org/10.1007/s00365-019-09490-1
  15. L. Huang, D.-C. Chang, and D. Yang, Fourier transform of anisotropic mixed-norm Hardy spaces, Front. Math. China 16 (2021), no. 1, 119-139. https://doi.org/10.1007/s11464-021-0906-9
  16. L. Huang, D.-C. Chang, and D. Yang, Fourier transform of Hardy spaces associated with ball quasi-Banach function spaces, Submitted.
  17. L. Huang, J. Liu, D. Yang, and W. Yuan, Atomic and Littlewood-Paley characterizations of anisotropic mixed-norm Hardy spaces and their applications, J. Geom. Anal. 29 (2019), no. 3, 1991-2067. https://doi.org/10.1007/s12220-018-0070-y
  18. L. Huang, J. Liu, D. Yang, and W. Yuan, Real-variable characterizations of new anisotropic mixed-norm Hardy spaces, Commun. Pure Appl. Anal. 19 (2020), no. 6, 3033-3082. https://doi.org/10.3934/cpaa.2020132
  19. J. Johnsen, S. Munch Hansen, and W. Sickel, Characterisation by local means of anisotropic Lizorkin-Triebel spaces with mixed norms, Z. Anal. Anwend. 32 (2013), no. 3, 257-277. https://doi.org/10.4171/ZAA/1484
  20. J. Johnsen, S. Munch Hansen, and W. Sickel, Anisotropic Lizorkin-Triebel spaces with mixed norms-traces on smooth boundaries, Math. Nachr. 288 (2015), no. 11-12, 1327-1359. https://doi.org/10.1002/mana.201300313
  21. S. Muller, Hardy space methods for nonlinear partial differential equations, Tatra Mt. Math. Publ. 4 (1994), 159-168.
  22. T. Nogayama, T. Ono, D. Salim, and Y. Sawano, Atomic decomposition for mixed Morrey spaces, J. Geom. Anal. 31 (2021), no. 9, 9338-9365. https://doi.org/10.1007/s12220-020-00513-z
  23. E. M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, 43, Princeton University Press, Princeton, NJ, 1993.
  24. E. M. Stein and G. Weiss, On the theory of harmonic functions of several variables. I. The theory of Hp-spaces, Acta Math. 103 (1960), 25-62. https://doi.org/10.1007/BF02546524
  25. M. H. Taibleson and G. Weiss, The molecular characterization of certain Hardy spaces, in Representation theorems for Hardy spaces, 67-149, Asterisque, 77, Soc. Math. France, Paris, 1980.
  26. H. Triebel, Theory of function spaces. III, Monographs in Mathematics, 100, Birkhauser Verlag, Basel, 2006.
  27. D. Yang, D. Yang, and G. Hu, The Hardy space H1 with non-doubling measures and their applications, Lecture Notes in Mathematics, 2084, Springer, Cham, 2013. https://doi.org/10.1007/978-3-319-00825-7
  28. F. Wang, Y. Han, Z. He, and D. Yang, Besov and Triebel-Lizorkin spaces on spaces of homogeneous type with applications to boundedness of Calderon-Zygmund operators, Dissertationes Math. 565 (2021), 1-113. https://doi.org/10.4064/dm821-4-2021