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FOURIER TRANSFORM OF ANISOTROPIC MIXED-NORM

HARDY SPACES WITH APPLICATIONS TO

HARDY–LITTLEWOOD INEQUALITIES

Jun Liu, Yaqian Lu, and Mingdong Zhang

Abstract. Let ~p ∈ (0, 1]n be an n-dimensional vector and A a dilation.

Let H~p
A(Rn) denote the anisotropic mixed-norm Hardy space defined via

the radial maximal function. Using the known atomic characterization of

H~p
A(Rn) and establishing a uniform estimate for corresponding atoms, the

authors prove that the Fourier transform of f ∈ H~p
A(Rn) coincides with

a continuous function F on Rn in the sense of tempered distributions.

Moreover, the function F can be controlled pointwisely by the product
of the Hardy space norm of f and a step function with respect to the

transpose matrix of A. As applications, the authors obtain a higher

order of convergence for the function F at the origin, and an analogue of

Hardy–Littlewood inequalities in the present setting of H~p
A(Rn).

1. Introduction

Let ~p := (p1, . . . , pn) ∈ (0,∞)n be an n-dimensional vector and A a dilation.

The anisotropic mixed-norm Hardy space H~p
A(Rn) was introduced in [18]. The

main purpose of this paper is to study the Fourier transform on H~p
A(Rn) associ-

ated with ~p ∈ (0, 1]n. The question of the Fourier transform on classical Hardy
spaces Hp(Rn) was put forward originally by Fefferman and Stein [12], which is
an important topic in the real-variable theory of Hp(Rn). Applying entire func-
tions of exponential type, Coifman [10] first characterized the Fourier transform

f̂ of f ∈ Hp(R). The related conclusions in higher dimensions were studied
in [2, 11, 13, 25]. Particularly, the following estimate was given by Taibleson
and Weiss [25]: for any given p ∈ (0, 1], the Fourier transform of f ∈ Hp(Rn)
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coincides with a continuous function F on Rn, which satisfies that there exists
a positive constant C(n,p) such that, for any x ∈ Rn,

|F (x)| ≤ C(n,p)‖f‖Hp(Rn)|x|n(1/p−1).(1)

Moreover, the estimate (1) illustrates the following inequality as a generaliza-
tion of the well-known Hardy–Littlewood inequality for Hardy spaces, that is,
for any fixed p ∈ (0, 1], there exists a positive constant K such that, for each
f ∈ Hp(Rn), [∫

Rn
|x|n(p−2) |F (x)|p dx

]1/p
≤ K‖f‖Hp(Rn),(2)

where F is as in (1); see [23, p. 128].
On the other hand, the theory of classic Hardy spaces Hp(Rn) has a wide

range of applications in many mathematical fields such as harmonic analysis
and partial differential equations; see, for instance, [12, 21, 23, 24]. Inspired by
the notable work of Calderón and Torchinsky [3] on parabolic Hardy spaces,
there were various generalizations of classic Hardy spaces; see, for instance, [1,8,
14,18,26–28]. In particular, Bownik [1] introduced the anisotropic Hardy space
Hp
A(Rn), where p ∈ (0,∞) and A is a dilation, which is actually a generalization

of both the isotropic Hardy space and the parabolic Hardy space. In addition,
via the atomic characterization ofHp

A(Rn), Bownik and Wang [2] extended both
inequalities (1) and (2) to the anisotropic Hardy space Hp

A(Rn). Recently, the
analogous results were proved in the new setting of Hardy spaces associated
with ball quasi-Banach function spaces and the anisotropic mixed-norm Hardy

space H~p
~a(Rn), where

~a := (a1, . . . , an) ∈ [1,∞)n and ~p := (p1, . . . , pn) ∈ (0, 1]n;

see, respectively, [15, 16]. In addition, motivated by the previous work of [8,
12, 17], Huang et al. [18] introduced the anisotropic mixed-norm Hardy space

H~p
A(Rn) with respect to ~p ∈ (0,∞)n and a dilation A, and investigated its

various real-variable characterizations. For more information on mixed-norm
function spaces, we refer the reader to [4–7,9, 19,20,22].

Inspired by the known results about the Fourier transform of the aforemen-

tioned Hardy-type spaces (namely, Hp(Rn), Hp
A(Rn) and H~p

~a(Rn)), using the

real-variable theory of the anisotropic mixed-normed Hardy space H~p
A(Rn) from

[18], in this paper, we extend the inequality (1) to the setting of anisotropic

mixed-norm Hardy spaces H~p
A(Rn) and also present some applications via our

main result.
As a preliminary, in Section 2, we present definitions of dilations, mixed-

norm Lebesgue spaces L~p(Rn) and anisotropic mixed-norm Hardy spaces.
Section 3 is aimed at proving the main result (see Theorem 3.1 below),

namely, the Fourier transform f̂ of f ∈ H~p
A(Rn) coincides with a continuous



FOURIER TRANSFORM OF ANISOTROPIC MIXED-NORM HARDY SPACES 929

function F in the sense of tempered distributions. To this end, applying Lem-
mas 3.2 and 3.4, we first obtain a uniform pointwise estimate for atoms (see
Lemma 3.3 below). Then, we use some real-variable characterizations from
[18], especially atom decompositions, to show Theorem 3.1. Meanwhile, we
also get a pointwise inequality of the continuous function F , which indicates
the necessity of vanishing moments of anisotropic mixed-norm atoms in some
sense (see Remark 3.7(ii) below).

As applications, in Section 4, we present some consequences of Theorem 3.1.
First, the above function F has a higher order convergence at the origin; see
(19) below. Moreover, we prove that the term

|F (·)|min
{

[ρ∗(·)]
1− 1

p−
− 1
p+ , [ρ∗(·)]

1− 2
p+

}
is Lp+ -integrable, and this integral can be uniformly controlled by a positive
constant multiple of the Hardy space norm of f ; see (25) below. The above re-
sult is actually a generalization of the Hardy–Littlewood inequality from classic
Hardy spaces to the setting of anisotropic mixed-norm Hardy spaces.

Finally, we make some conventions on notation. Let N := {1, 2, . . .}, Z+ :=
{0}∪N and 0 be the origin of Rn. For a given multi-index α := (α1, . . . , αn) ∈
(Z+)n =: Zn+, let |α| := α1 + · · · + αn and ∂α := ( ∂

∂x1
)α1 · · · ( ∂

∂xn
)αn . We use

C to denote a positive constant which is independent of the main parameters,
but may vary in different setting. The symbol g . h means g ≤ Ch and, if
g . h . g, then we write g ∼ h. If f ≤ Ch and h = g or h ≤ g, we then write
f . h ∼ g or f . h . g, rather than f . h = g or f . h ≤ g. In addition, for
any set E ⊂ Rn, we denote its characteristic function by 1E , the set Rn \E by

E{ and its n-dimensional Lebesgue measure by |E|. For any s ∈ R, we use bsc
(resp., dse) to denote the largest (resp., least) integer not greater (resp., less)
than s.

2. Preliminaries

In this section, we give the definitions of dilations, mixed-norm Lebesgue
spaces and anisotropic mixed-norm Hardy spaces. The following definition is
originally from [1].

Definition 1. We call A a dilation if A is a real n× n matrix A and satisfies
the following condition:

min
λ∈σ(A)

|λ| > 1,

where σ(A) denotes the set of all eigenvalues of A. We denote the eigenvalues
of A by λ1, . . . , λn, which satisfies 1 < |λ1| ≤ · · · ≤ |λn|. Here and thereafter,
let λ− and λ+ be two numbers such that 1 < λ− < |λ1| ≤ · · · ≤ |λn| < λ+.

By [1, p. 5, Lemma 2.2], for a given dilation A, there exists an open set in
Rn which is called an ellipsoid, denoted by ∆, and has the following property:
|∆| = 1, and we can find a constant r ∈ (1,∞) such that ∆ ⊂ r∆ ⊂ A∆. For
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any given i ∈ Z, we denote Ai∆ by Bi. It is easy to check that {Bi}i∈Z is a
family of open sets around the origin, Bi ⊂ rBi ⊂ Bi+1 and |Bi| = bi with
b := |detA|. For any given dilation A, the notation B is the set of all dilated
balls, namely,

B := {x+Bi : x ∈ Rn, i ∈ Z} .(3)

The next two definitions were introduced by Bownik [1].

Definition 2. A measurable mapping ρ : Rn → [0,∞) is called a homogeneous
quasi-norm, with respect to a dilation A, if

(i) ρ(x) ≥ 0, and ρ(x) = 0⇒ x = 0;
(ii) for any x ∈ Rn, ρ(Ax) = bρ(x);
(iii) for any x, y ∈ Rn, ρ(x + y) ≤ c[ρ(x) + ρ(y)], where c is a positive

constant independent of x and y.

It is easy to verify that the following step homogeneous quasi-norm is a
homogeneous quasi-norm.

Definition 3. A step homogeneous quasi-norm ρ with respect to a dilation A,
is defined by setting, for each x ∈ Rn,

ρ(x) :=

{
bi when x ∈ Bi+1\Bi,
0 when x = 0.

In [1, p. 5, Lemma 2.4], it was proved that any two homogeneous quasi-
norms associated with a fixed dilation A are equivalent. For convenience, in
what follows, we always use the step homogeneous quasi-norm.

A C∞ complex-valued function φ on Rn is called a Schwartz function if, for
every pair of k ∈ Z+ and multi-index γ ∈ Zn+, the following inequality

‖φ‖γ,k := sup
x∈Rn

[ρ(x)]k |∂γφ(x)| <∞

holds true. The set of all Schwartz functions on Rn is denoted by S(Rn).
Indeed, {‖·‖γ,k}γ∈Zn+, k∈Z+

is a family of semi-norms, which induces a topology

and makes S(Rn) to be a topological vector space. We denote the dual space
of S(Rn) by S ′(Rn), equipped with the weak-∗ topology.

For an n-dimensional vector ~p := (p1, . . . , pn) ∈ (0,∞]
n
, let

p− := min
i∈{1,...,n}

{pi}, p+ := max
i∈{1,...,n}

{pi}, and p := min{p−, 1}.(4)

Definition 4. Let ~p := (p1, . . . , pn) ∈ (0,∞]
n
. The mixed-norm Lebesgue

space L~p(Rn) is defined to be the set of all measurable functions f such that

‖f‖L~p(Rn) :=

(∫
R
· · ·
(∫

R
|f(x1, . . . , xn)|p1dx1

) p2
p1

· · · dxn

) 1
pn

<∞

with the usual modifications made when pi =∞ for some i ∈ {1, . . . , n}.
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Definition 5. Let ϕ ∈ S(Rn) satisfy
∫
Rn ϕ(x) dx 6= 0. The radial maximal

function Mϕ(f) of f ∈ S ′(Rn), with respect to ϕ, is defined by

Mϕ(f)(x) := sup
k∈Z
|f ∗ ϕk(x)|, ∀x ∈ Rn,

here and thereafter, for any ϕ ∈ S(Rn) and k ∈ Z, ϕk(·) := bkϕ(Ak·).

Definition 6. Let ~p ∈ (0,∞)
n

and ϕ be as in Definition 5. The anisotropic

mixed-norm Hardy space H~p
A(Rn) is defined by setting

H~p
A(Rn) :=

{
f ∈ S ′(Rn) : Mϕ(f) ∈ L~p(Rn)

}
.

Moreover, for any f ∈ H~p
A(Rn), let ‖f‖

H~p
A(Rn) := ‖Mϕ(f)‖L~p(Rn).

3. Fourier transforms of H~p
A(Rn)

In this section, we study the Fourier transform f̂ of f ∈ H~p
A(Rn). We first

present the notion of Fourier transforms.
For a given Schwartz function ϕ ∈ S(Rn), we define its Fourier transform

as follows:

Fϕ(x) = ϕ̂(x) :=

∫
Rn
ϕ(t)e−2πıt·x dt, ∀x ∈ Rn,

where ı :=
√
−1 and t · x :=

∑n
k=1 tkxk for any t := (t1, . . . , tn), x :=

(x1, . . . , xn) ∈ Rn. Furthermore, we can also define the Fourier transform

of f ∈ S ′(Rn), also denoted by Ff or f̂ , that is, for each ϕ ∈ S(Rn),

〈Ff, ϕ〉 =
〈
f̂ , ϕ

〉
:= 〈f, ϕ̂〉 .

We now give the main result of this paper.

Theorem 3.1. Let ~p ∈ (0, 1]
n

. Then, for any f ∈ H~p
A(Rn), there exists a

continuous function F on Rn such that

f̂ = F in S ′(Rn),

and there exists a positive constant C, depending only on A and ~p, such that,
for any x ∈ Rn,

|F (x)| ≤ C‖f‖
H~p
A(Rn) max

{
[ρ∗(x)]

1
p−
−1
, [ρ∗(x)]

1
p+
−1
}
,(5)

here and thereafter, ρ∗ is as in Section 2 with A replaced by its transposed
matrix A∗.

Recall that, for a given measurable set E ⊂ Rn, the Lebesgue space Lp(E),
0 < p <∞, is the set of all the measurable functions satisfying that

‖f‖Lp(E) :=

[∫
E

|f(x)|p dx
]1/p

<∞,
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and L∞(E) is the set of all the measurable functions satisfying that

‖f‖L∞(E) := ess sup
x∈E

|f(x)| <∞.

The dilation operator DA is defined by setting, for any measurable function
f on Rn,

DA(f)(·) := f(A·).
Then, for any f ∈ L1(Rn), k ∈ Z and x ∈ Rn, the following identity

f̂(x) = bk
(
Dk
A∗FDk

Af
)

(x)

can be easily verified.
Next, we present some notions appearing in the real-variable characteriza-

tions of anisotropic mixed-norm Hardy spaces; see [18].

Definition 7. Let ~p ∈ (0,∞)
n
, r ∈ (1,∞] and

s ∈
[⌊(

1

p−
− 1

)
ln b

lnλ−

⌋
,∞
)
∩ Z+,(6)

where p− is as in (4).

(I) A measurable function a on Rn is called an anisotropic (~p, r, s)-atom
(simply, a (~p, r, s)-atom) if

(i) supp a ⊂ B, where B ∈ B with B as in (1);

(ii) ‖a‖Lr(Rn) ≤ |B|1/r
‖1B‖L~p(Rn)

;

(iii)
∫
Rn a(x)xγ dx = 0 for any γ ∈ Zn+ with |γ| ≤ s.

(II) The anisotropic mixed-norm atomic Hardy space H~p,r,s
A (Rn) is defined

to be the set of all f ∈ S ′(Rn) satisfying that there exist a sequence
{λi}i∈N ⊂ C and a sequence of (~p, r, s)-atoms {ai}i∈N, supported, re-
spectively in {B(i)}i∈N ⊂ B such that

f =
∑
i∈N

λiai in S ′(Rn).

Furthermore, for any f ∈ H~p,r,s
A (Rn), let

‖f‖
H~p,r,s
A (Rn) := inf

∥∥∥∥∥∥
{∑
i∈N

[
|λi|1B(i)

‖1B(i)‖L~p(Rn)

]p}1/p
∥∥∥∥∥∥
L~p(Rn)

,

where the infimum is taken over all the decompositions of f as above.

By an argument similar to that used in proof [2, Lemma 4], we immediately
obtain Lemma 3.2, which will be used to prove Lemma 3.3 below; the details
are omitted.

Lemma 3.2. Let ~p, r and s be as in Definition 7. Assume that a is a (~p, r, s)-
atom supported in x0 + Bi0 with some x0 ∈ Rn and i0 ∈ Z. Then there exists
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a positive constant C, depending only on A and s, such that, for any α ∈ Zn+
with |α| ≤ s and x ∈ Rn,∣∣∂α (FDi0

Aa
)

(x)
∣∣ ≤ Cb−i0/r‖a‖Lr(Rn) min

{
1, |x|s−|α|+1

}
.

Applying Lemma 3.2, we obtain a uniform estimate for (~p, r, s)-atoms as
follows, which plays a key role in the proof of Theorem 3.1.

Lemma 3.3. Let ~p ∈ (0, 1]
n

, r ∈ (1,∞] and s be as in (6). Then there exists
a positive constant C such that, for any (~p, r, s)-atom a and x ∈ Rn,

|â(x)| ≤ C max
{

[ρ∗(x)]
1
p−
−1
, [ρ∗(x)]

1
p+
−1
}
,(7)

where ρ∗ is as in Theorem 3.1.

The following inequalities will be used to prove Lemma 3.3, which are just
[1, p. 11, Lemma 3.2].

Lemma 3.4. Let A be a given dilation. There exists a positive constant C
such that, for any x ∈ Rn,

1

C
[ρ(x)]lnλ−/ ln b ≤ |x| ≤ C[ρ(x)]lnλ+/ ln b when ρ(x) ∈ (1,∞),

and

1

C
[ρ(x)]lnλ+/ ln b ≤ |x| ≤ C[ρ(x)]lnλ−/ ln b when ρ(x) ∈ [0, 1],

where λ− and λ+ are as in Section 2.

We now give the proof of Lemma 3.3.

Proof of Lemma 3.3. Let a be a (~p, r, s)-atom supported in x0 +Bi0 with some
x0 ∈ Rn and i0 ∈ Z. Without loss of generality, we may assume x0 = 0. By

Lemma 3.2 with α = (

n times︷ ︸︸ ︷
0, . . . , 0), we find that, for any x ∈ Rn,

|â(x)| =
∣∣bi0 (Di0

A∗FDi0
Aa
)

(x)
∣∣ =

∣∣bi0 (FDi0
Aa
) (

(A∗)i0x
)∣∣

. bi0b−i0/r‖a‖Lr(Rn) min
{

1,
∣∣(A∗)i0x∣∣s+1

}
. bi0

∥∥1Bi0∥∥−1L~p(Rn) min
{

1,
∣∣(A∗)i0x∣∣s+1

}
.(8)

Next, we show that∥∥1Bi0∥∥−1L~p(Rn) . max

{
b
− i0
p− , b

− i0
p+

}
.(9)

Indeed, there exists a K ∈ Z large enough such that, if i0 ∈ (K,∞) ∩ Z, then

∥∥1Bi0∥∥L~p(Rn) =

(∫
R
· · ·
(∫

R
|1Bi0 |

p1dx1

) p2
p1

· · · dxn

) 1
pn
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≥

(∫
R
· · ·
(∫

R
|1Bi0 |

p+dx1

) p+
p+

· · · dxn

) 1
p+

= b
i0
p+ .

On the other hand, if i0 ∈ (−∞,K], by [18, Lemma 6.8], we conclude that, for
any ε ∈ (0, 1),

‖1BK‖L~p(Rn)
‖1Bi0 ‖L~p(Rn)

. b
(K−i0) 1+ε

p− .

Letting ε→ 0, we have

∥∥1Bi0∥∥−1L~p(Rn) . b
K
p−

‖1BK‖L~p(Rn)
b
− i0
p− .

Thus, (9) holds true. From this and (8), it follows that, for any x ∈ Rn,

|â(x)| . bi0 max

{
b
− i0
p− , b

− i0
p+

}
min

{
1,
∣∣(A∗)i0x∣∣s+1

}
.(10)

We next prove (7) by considering two cases: ρ∗(x) ≤ b−i0 and ρ∗(x) > b−i0 .
Case 1: ρ∗(x) ≤ b−i0 . In this case, note that ρ∗((A

∗)i0x) ≤ 1. From (10),
Lemma 3.4 and the fact that

1− 1

p+
+ (s+ 1)

lnλ−
ln b

≥ 1− 1

p−
+ (s+ 1)

lnλ−
ln b

> 0,

we deduce that, for any x ∈ Rn satisfying ρ∗(x) ≤ b−i0 ,

|â(x)| . bi0 max

{
b
− i0
p− , b

− i0
p+

}[
ρ∗
(
(A∗)i0x

)](s+1)
lnλ−
ln b

∼ max

{
b
i0[1− 1

p−
+(s+1)

lnλ−
ln b ]

, b
i0[1− 1

p+
+(s+1)

lnλ−
ln b ]

}
[ρ∗(x)]

(s+1)
lnλ−
ln b

. max
{

[ρ∗(x)]
1
p−
−1
, [ρ∗(x)]

1
p+
−1
}
.(11)

This shows (7) for Case 1.
Case 2: ρ∗(x) > b−i0 . In this case, note that ρ∗((A

∗)i0x) > 1. Using (10),
Lemma 3.4 again and the fact that

1

p−
− 1 ≥ 1

p+
− 1 ≥ 0,

it is easy to see that, for any x ∈ Rn satisfying ρ∗(x) > b−i0 ,

|â(x)| . bi0 max

{
b
− i0
p− , b

− i0
p+

}
∼ max

{
b
(1− 1

p−
)i0 , b

(1− 1
p+

)i0
}

. max
{

[ρ∗(x)]
1
p−
−1
, [ρ∗(x)]

1
p+
−1
}
,

which completes the proof of (7) and hence of Lemma 3.3. �
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Lemma 3.5. Let ~p ∈ (0, 1]n. Then, for any {λi}i∈N ⊂ C and {B(i)}i∈N ⊂ B,

∑
i∈N
|λi| ≤

∥∥∥∥∥∥
{∑
i∈N

[
|λi|1B(i)

‖1B(i)‖L~p(Rn)

]p}1/p
∥∥∥∥∥∥
L~p(Rn)

,

where p is as in (4).

Proof. Observe that, for any {λi}i∈N ⊂ C and γ ∈ (0, 1],( ∞∑
i=1

|λi|

)γ
≤
∞∑
i=1

|λi|γ .(12)

By this and the inverse Minkovski inequality, we know that∥∥∥∥∥∥
{ ∞∑
i=1

[
|λi|1B(i)

‖1B(i)‖L~p(Rn)

]p}1/p
∥∥∥∥∥∥
L~p(Rn)

≥

∥∥∥∥∥
∞∑
i=1

|λi|1B(i)

‖1B(i)‖L~p(Rn)

∥∥∥∥∥
L~p(Rn)

≥

∥∥∥∥∥
N∑
i=1

|λi|1B(i)

‖1B(i)‖L~p(Rn)

∥∥∥∥∥
L~p(Rn)

≥
N∑
i=1

|λi|.

Letting N →∞, we obtain the desired inequality as in Lemma 3.5. �

To show Theorem 3.1, we also need the following atomic characterizations

of H~p
A(Rn), which is just [18, Theorem 4.7].

Lemma 3.6. Let ~p ∈ (0,∞)
n

, r ∈ (max{p+, 1},∞] with p+ as in (4), s be as
in (6) and

N ∈ N ∩
[⌊(

1

min{p−, 1}
− 1

)
ln b

lnλ−

⌋
+ 2,∞

)
with p− as in (4). Then H~p

A(Rn) = H~p,r,s
A (Rn) with equivalent quasi-norms.

We now prove Theorem 3.1.

Proof of Theorem 3.1. Let ~p ∈ (0, 1]
n
, r ∈ (max{p+, 1},∞], s be as in (6) and

f ∈ H~p
A(Rn). Without loss of generality, we may assume that ‖f‖

H~p
A(Rn) > 0.

Then, by Lemma 3.6, we find that there exist a sequence {λi}i∈N ⊂ C and a
sequence of (~p, r, s)-atoms {ai}i∈N, supported, respectively in {B(i)}i∈N ⊂ B,
such that

f =
∑
i∈N

λiai in S ′(Rn),(13)

and

‖f‖
H~p
A(Rn) ∼

∥∥∥∥∥∥
{∑
i∈N

[
|λi|1B(i)

‖1B(i)‖L~p(Rn)

]p}1/p
∥∥∥∥∥∥
L~p(Rn)

.(14)
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Taking the Fourier transform on the both sides of (13), we have

f̂ =
∑
i∈N

λiâi in S ′(Rn).(15)

Note that a function f ∈ L1(Rn) implies that f̂ is well defined in Rn, so does
âi for any i ∈ N. From Lemmas 3.3 and 3.5, and (14), it follows that, for any
x ∈ Rn,∑

i∈N
|λi||âi(x)| .

∑
i∈N
|λi|max

{
[ρ∗(x)]

1
p−
−1
, [ρ∗(x)]

1
p+
−1
}

. ‖f‖
H~p
A(Rn) max

{
[ρ∗(x)]

1
p−
−1
, [ρ∗(x)]

1
p+
−1
}
<∞.(16)

Therefore, for any x ∈ Rn, the function

F (x) :=
∑
i∈N

λiâi(x)(17)

is well defined pointwisely and

|F (x)| . ‖f‖
H~p
A(Rn) max

{
[ρ∗(x)]

1
p−
−1
, [ρ∗(x)]

1
p+
−1
}
.

We next show the continuity of the function F on Rn. If we can prove that
F is continuous on any compact subset of Rn, then the continuity on Rn is
obvious. Indeed, for any compact subset E, there exists a positive constant K,
depending only on A and E, such that ρ∗(x) ≤ K holds for every x ∈ E. By
this and (16), we conclude that, for any x ∈ E,

∑
i∈N
|λi||âi(x)| . max

{
K

1
p−
−1
, K

1
p+
−1
}
‖f‖

H~p
A(Rn) <∞.

Thus, the summation
∑
i∈N λiâi(·) converges uniformly on E. This, together

with the fact that, for any i ∈ N, âi(x) is continuous, implies that F is also
continuous on any compact subset E and hence on Rn.

Finally, to complete the proof of Theorem 3.1, by (15) and (17), we only
need to show that

F =
∑
i∈N

λiâi in S ′(Rn).(18)

For this purpose, from Lemma 3.3 and the definition of Schwartz functions, we
deduce that, for any ϕ ∈ S(Rn) and i ∈ N,∣∣∣∣∫

Rn
âi(x)ϕ(x) dx

∣∣∣∣
≤

∞∑
k=1

∫
(A∗)k+1B∗0\(A∗)kB∗0

max
{

[ρ∗(x)]
1
p−
−1
, [ρ∗(x)]

1
p+
−1
}
|ϕ(x)| dx

+ ‖ϕ‖L1(Rn)
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.
∞∑
k=1

bkb
k( 1
p−
−1)

b
−k(d 1

p−
−1e+2)

+ ‖ϕ‖L1(Rn)

∼
∞∑
k=1

b−k + ‖ϕ‖L1(Rn),

where B∗0 is the unit dilated ball with respect to A∗. This implies that there
exists a positive constant C such that

∣∣∫
Rn âi(x)ϕ(x) dx

∣∣ ≤ C holds true uni-
formly for any i ∈ Z. Combining this, Lemma 3.5 and (14), we have

lim
I→∞

∞∑
i=I+1

|λi|
∣∣∣∣∫

Rn
âi(x)ϕ(x) dx

∣∣∣∣ . lim
I→∞

∞∑
i=I+1

|λi| = 0.

Therefore, for any ϕ ∈ S(Rn),

〈F,ϕ〉 = lim
I→∞

〈
I∑
i=1

λiâi, ϕ

〉
.

This finishes the proof of (18) and hence of Theorem 3.1. �

Remark 3.7. (i) When ~p = (p, . . . , p) ∈ (0, 1]n, the Hardy space H~p
A(Rn) in

Theorem 3.1 coincides with the anisotropic Hardy space Hp
A(Rn) from [1], and

the inequality (5) becomes

|F (x)| ≤ C‖f‖HpA(Rn)[ρ∗(x)]
1
p−1

with C as in (5). In this case, Theorem 3.1 is just [2, Theorem 1].

(ii) Let f ∈ H~p
A(Rn) ∩ L1(Rn). By the inequality (5) with x = 0, we obtain

F = f̂ and f̂(0) = 0. Thus, the function f ∈ H~p
A(Rn)∩L1(Rn) has a vanishing

moment, which illustrates the necessity of the vanishing moment of atoms in
some sense.

(iii) Very recently, in [15, Theorem 2.4], Huang et al. obtained a result
similar to Theorem 3.1 in the setting of the anisotropic mixed-norm Hardy

space H~p
~a(Rn), where

~a := (a1, . . . , an) ∈ [1,∞)n and ~p := (p1, . . . , pn) ∈ (0, 1]n.

We should point out that if

A :=


2a1 0 · · · 0
0 2a2 · · · 0
...

...
. . .

...
0 0 · · · 2an

 ,

then H~p
A(Rn)=H~p

~a(Rn) with equivalent quasi-norms. In this sense, Theorem
3.1 covers [15, Theorem 2.4] as a special case.
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4. Applications

As applications of Theorem 3.1, we first prove the function F given in The-
orem 3.1 has a higher order convergence at the origin. Then we extend the
Hardy–Littlewood inequality to the setting of anisotropic mixed-norm Hardy
spaces.

We embark on the proof of the first desired result.

Theorem 4.1. Let ~p ∈ (0, 1]
n

. Then, for any f ∈ H~p
A(Rn), there exists a

continuous function F on Rn such that f̂ = F in S ′(Rn) and

lim
|x|→0+

F (x)

[ρ∗(x)]
1
p+
−1

= 0.(19)

Proof. Let ~p ∈ (0, 1]n, r ∈ (max{p+, 1},∞], s be as in (6) and f ∈ H~p
A(Rn).

Then, by Lemma 3.6, we find that there exist a sequence {λi}i∈N ⊂ C and a
sequence of (~p, r, s)-atoms, {ai}i∈N, supported, respectively, in {B(i)}i∈N ⊂ B
such that

f =
∑
i∈N

λiai in S ′(Rn),

and

‖f‖
H~p
A(Rn) ∼

∥∥∥∥∥∥
{∑
i∈N

[
|λi|1B(i)

‖1B(i)‖L~p(Rn)

]p}1/p
∥∥∥∥∥∥
L~p(Rn)

.(20)

Furthermore, from the proof of Theorem 3.1, it follows that the function

F (x) =
∑
i∈N

λiâi(x), ∀x ∈ Rn,(21)

is continuous and satisfies that f̂ = F in S ′(Rn).
Thus, to show Theorem 4.1, we only need to prove (19) holds true for the

function F as in (21). To do this, observe that, for any (~p, r, s)-atom a sup-
ported in x0 + Bk0 with some x0 ∈ Rn and k0 ∈ Z, when ρ∗(x) ≤ b−k0 , (11)
holds true. This, together with the fact that

1− 1

p+
+ (s+ 1)

lnλ−
ln b

> 0,

implies that

lim
|x|→0+

|â(x)|

[ρ∗(x)]
1
p+
−1

= 0.(22)

For any x ∈ Rn, we get the following inequality by (21):

|F (x)|

[ρ∗(x)]
1
p+
−1
≤
∑
i∈N
|λi|

|âi(x)|

[ρ∗(x)]
1
p+
−1
.(23)
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Moreover, by (7) and the fact
∑
i∈N |λi| < ∞, we know that the dominated

convergence theorem can be applied to the right side of (23). Combining this
and (22), we deduce that

lim
|x|→0+

F (x)

[ρ∗(x)]
1
p+
−1

= 0,

which completes the proof of Theorem 4.1. �

Remark 4.2. (i) Similarly to Remark 3.7(i), if ~p = (p, . . . , p) ∈ (0, 1]n, then

the Hardy space H~p
A(Rn) in Theorem 4.1 coincides with the anisotropic Hardy

space Hp
A(Rn) from [1]. In this case, Theorem 4.1 is just [2, Corollary 6].

(ii) By Theorem 4.1 and Lemma 3.4, we have

lim
|x|→0+

F (x)

|x|
ln b

lnλ+
( 1
p+
−1)

= 0.(24)

Observe that, when ~p = (p, . . . , p) ∈ (0, 1]n and A = d In×n for some d ∈ R
with |d| ∈ (1,∞), here and thereafter, In×n denotes the unit matrix of order

n, the Hardy space H~p
A(Rn) comes back to the classical Hardy space Hp(Rn)

of Fefferman and Stein [12]. In this case, ln b
lnλ+

= n and p+ = p, and hence (24)

is just the well-known result on Hp(Rn) (see [23, p. 128]).

As another application of Theorem 3.1, we extend the Hardy–Littlewood in-
equality to the setting of anisotropic mixed norm Hardy spaces in the following
theorem.

Theorem 4.3. Let ~p ∈ (0, 1]n. Then, for any f ∈ H~p
A(Rn), there exists a

continuous function F on Rn such that f̂ = F in S ′(Rn) and(∫
Rn
|F (x)|p+ min

{
[ρ∗(x)]

p+−
p+
p−
−1
, [ρ∗(x)]

p+−2
}
dx

) 1
p+

≤ C‖f‖
H~p
A(Rn),(25)

where C is a positive constant depending only on A and ~p.

Proof. Let ~p ∈ (0, 1]n and f ∈ H~p
A(Rn). Then, by Lemma 3.6, we find that

there exist a sequence {λi}i∈N ⊂ C and a sequence of (~p, 2, s)-atoms {ai}i∈N,
supported, respectively, in {B(i)}i∈N ⊂ B such that

f =
∑
i∈N

λiai in S ′(Rn),

and ∥∥∥∥∥∥
{∑
i∈N

[
|λi|1B(i)

‖1B(i)‖L~p(Rn)

]p}1/p
∥∥∥∥∥∥
L~p(Rn)

. ‖f‖
H~p
A(Rn) <∞.(26)
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To prove Theorem 4.3, it suffices to show that (25) holds true for the function F
as in (21). For this purpose, by the fact that p ≤ p+ ≤ 1, the inverse Minkovski
inequality and (26), we have(∑

i∈N
|λi|p+

)1/p+

=

(∑
i∈N

∥∥∥∥ |λi|1B(i)

‖1B(i)‖L~p(Rn)

∥∥∥∥p+
L~p(Rn)

)1/p+

=

∑
i∈N

∥∥∥∥∥ |λi|p+1B(i)

‖1B(i)‖p+L~p(Rn)

∥∥∥∥∥
L~p/p+ (Rn)

1/p+

≤

∥∥∥∥∥∑
i∈N

[
|λi|1B(i)

‖1B(i)‖L~p(Rn)

]p+∥∥∥∥∥
1/p+

L~p/p+ (Rn)

=

∥∥∥∥∥∥
{∑
i∈N

[
|λi|1B(i)

‖1B(i)‖L~p(Rn)

]p+}1/p+
∥∥∥∥∥∥
L~p(Rn)

≤

∥∥∥∥∥∥
{∑
i∈N

[
|λi|1B(i)

‖1B(i)‖L~p(Rn)

]p}1/p
∥∥∥∥∥∥
L~p(Rn)

. ‖f‖
H~p
A(Rn).(27)

On another hand, from (21), the fact that p+ ∈ (0, 1], (12) and the Fatou
lemma, it follows that∫

Rn
|F (x)|p+ min

{
[ρ∗(x)]

p+−
p+
p−
−1
, [ρ∗(x)]

p+−2
}
dx

≤
∑
i∈N
|λi|p+

∫
Rn

[
|âi(x)|min

{
[ρ∗(x)]

1− 1
p−
− 1
p+ , [ρ∗(x)]

1− 2
p+

}]p+
dx.(28)

Next, we devote to proving the following uniform estimate for all (~p, 2, s)-atoms,
namely,(∫

Rn

[
|â(x)|min

{
[ρ∗(x)]

1− 1
p−
− 1
p+ , [ρ∗(x)]

1− 2
p+

}]p+
dx

)1/p+

≤M,(29)

where M is a positive constant independent of a. Assume that (29) holds true
for the moment. Combining this, (27) and (28), we conclude that(∫

Rn
|F (x)|p+ min

{
[ρ∗(x)]

p+−
p+
p−
−1
, [ρ∗(x)]

p+−2
}
dx

)1/p+

≤ M

(∑
i∈N
|λi|p+

)1/p+

. ‖f‖
H~p
A(Rn).

This is the desired conclusion (25).
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Thus, the rest of the whole proof is to show the assertion (29). Indeed, for
any (~p, 2, s)-atom a supported in a dilated ball x0 + Bi0 with some x0 ∈ Rn
and i0 ∈ Z, it is easy to see that(∫

Rn

[
|â(x)|min

{
[ρ∗(x)]

1− 1
p−
− 1
p+ , [ρ∗(x)]

1− 2
p+

}]p+
dx

)1/p+

.

(∫
(A∗)−i0+1B∗0

[
|â(x)|min

{
[ρ∗(x)]

1− 1
p−
− 1
p+ , [ρ∗(x)]

1− 2
p+

}]p+
dx

)1/p+

+

(∫
((A∗)−i0+1B∗0 )

{

[
|â(x)|min

{
[ρ∗(x)]

1− 1
p−
− 1
p+ , [ρ∗(x)]

1− 2
p+

}]p+
dx

)1/p+

=: I1 + I2,

where B∗0 is the unit dilated ball with respect to A∗.
Let θ be a fixed positive constant such that

1− 1

p+
+ (s+ 1)

lnλ−
ln b

− θ ≥ 1− 1

p−
+ (s+ 1)

lnλ−
ln b

− θ > 0.

Then, to deal with I1, by (11), we know that

I1 . bi0[1+(s+1)
lnλ−
ln b ] max

{
b
− i0
p− , b

− i0
p+

}(∫
(A∗)−i0+1B∗0[

min

{
[ρ∗(x)]

1− 1
p−
− 1
p+

+(s+1)
lnλ−
ln b , [ρ∗(x)]

1− 2
p+

+(s+1)
lnλ−
ln b

}]p+
dx

)1/p+

. bi0[1+(s+1)
lnλ−
ln b ] max

{
b
− i0
p− , b

− i0
p+

}
×min

{
b
−i0[1− 1

p−
+(s+1)

lnλ−
ln b −θ], b

−i0[1− 1
p+

+(s+1)
lnλ−
ln b −θ]

}

×

(∫
(A∗)−i0+1B∗0

[ρ∗(x)]
θp+−1 dx

)1/p+

∼ bi0θ

 ∑
k∈Z\N

b−i0+k(b− 1)b(−i0+k)(θp+−1)

1/p+

∼
(

b− 1

1− b−θp+

) 1
p+

.

As for the estimate of I2, by the Hölder inequality, the Plancherel theorem, the
fact that 0 < p− ≤ p+ ≤ 1 and the size condition of a, we obtain

I2 .

{∫
((A∗)−i0+1B∗0 )

{

|â(x)|2 dx

} 1
2
{∫

((A∗)−i0+1B∗0 )
{
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[
min

{
[ρ∗(x)]

1− 1
p−
− 1
p+ , [ρ∗(x)]

1− 2
p+

}] 2p+
2−p+

dx

} 2−p+
2p+

. ‖a‖L2(Rn)

{∑
k∈N

b−i0+k(b− 1)

×
[
min

{
b
(−i0+k)(1− 1

p−
− 1
p+

)
, b

(−i0+k)(1− 2
p+

)
}] 2p+

2−p+

} 2−p+
2p+

. ‖a‖L2(Rn)

{
b−i0

[
min

{
b
−i0(1− 1

p−
− 1
p+

)
, b
−i0(1− 2

p+
)
}] 2p+

2−p+

} 2−p+
2p+

. max
{
b
i0(

1
2−

1
p−

)
, b
i0(

1
2−

1
p+

)
}

min
{
b
−i0( 1

2−
1
p−

)
, b
−i0( 1

2−
1
p+

)
}

∼ 1.

This finishes the proof of (29) and hence of Theorem 4.3. �

Remark 4.4. Actually, when ~p = (p, . . . , p) ∈ (0, 1]n, the Hardy space H~p
A(Rn)

in Theorem 4.3 is just the anisotropic Hardy space Hp
A(Rn) from [1] in the

sense of equivalent quasi-norms. Thus, we point out that Theorem 4.3 covers
[2, Corollary 8]. Moreover, if A = d In×n for some d ∈ R with |d| ∈ (1,∞), then

the anisotropic mixed-norm Hardy space H~p
A(Rn), with ~p = (p, . . . , p) ∈ (0, 1]n,

coincides with the classical Hardy space Hp(Rn) of Fefferman and Stein [12].
In this case, ρ∗(x) ∼ |x|n for any x ∈ Rn, and hence (23) is just the classic
Hardy–Littlewood inequality as in (2).
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