• Title/Summary/Keyword: mitochondrial enzymes

Search Result 136, Processing Time 0.029 seconds

Complete Mitochondrial Genome and Phylogenetic Analysis for the Korean Field Mouse Apodemus peninsulae Found on Baengnyeong Island in South Korea

  • Jung A Kim;Hye Sook Jeon;Seung Min Lee;Hong Seomun;Junghwa An
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • v.4 no.2
    • /
    • pp.69-71
    • /
    • 2023
  • The Korean field mouse, Apodemus peninsulae mitochondrial genome has previously been reported for mice obtained from mainland Korea and China. In this investigation the complete mitochondrial genome sequence for a mouse obtained from Baengnyeong Island (BI) in South Korea was determined using high-throughput whole-genome sequencing for the first time. The circular genome was determined to be 16,268 bp in length. It was found to be composed of a typical complement gene that encodes 13 protein subunits of enzymes involved in oxidative phosphorylation, two ribosomal RNAs, 22 transfer RNAs, and one control region. Phylogenetic analysis involved 13 amino acid sequences and demonstrated that the A. peninsulae genome from BI was more closely grouped with two Korean samples (HQ660074 and JN546584) than the Chinese (KP671850) sample. This study verified the evolutionary status of A. peninsulae inhabiting the BI at the molecular level, and could be a significant supplement to the genetic background.

Coordination chemistry of mitochondrial copper metalloenzymes: exploring implications for copper dyshomeostasis in cell death

  • Daeun Shim;Jiyeon Han
    • BMB Reports
    • /
    • v.56 no.11
    • /
    • pp.575-583
    • /
    • 2023
  • Mitochondria, fundamental cellular organelles that govern energy metabolism, hold a pivotal role in cellular vitality. While consuming dioxygen to produce adenosine triphosphate (ATP), the electron transfer process within mitochondria can engender the formation of reactive oxygen species that exert dual roles in endothelial homeostatic signaling and oxidative stress. In the context of the intricate electron transfer process, several metal ions that include copper, iron, zinc, and manganese serve as crucial cofactors in mitochondrial metalloenzymes to mediate the synthesis of ATP and antioxidant defense. In this mini review, we provide a comprehensive understanding of the coordination chemistry of mitochondrial cuproenzymes. In detail, cytochrome c oxidase (CcO) reduces dioxygen to water coupled with proton pumping to generate an electrochemical gradient, while superoxide dismutase 1 (SOD1) functions in detoxifying superoxide into hydrogen peroxide. With an emphasis on the catalytic reactions of the copper metalloenzymes and insights into their ligand environment, we also outline the metalation process of these enzymes throughout the copper trafficking system. The impairment of copper homeostasis can trigger mitochondrial dysfunction, and potentially lead to the development of copper-related disorders. We describe the current knowledge regarding copper-mediated toxicity mechanisms, thereby shedding light on prospective therapeutic strategies for pathologies intertwined with copper dyshomeostasis.

Benzoyltransferase and Phenylacetyltransferase Activities in Cholestatic Rat Liver Induced by Common Bile Duct Ligation

  • Kim, Young-Jin;Kim, You-Hee
    • BMB Reports
    • /
    • v.32 no.1
    • /
    • pp.67-71
    • /
    • 1999
  • We have investigated the effect of cholestasis on the closely related acyl-CoA:amino acid N-acyltransferase, benzoyltransferase, and phenylacetyltransferase activities in rat liver. Benzoyltransferase and phenylacetyltransferase activities in the liver cytosol, mitochondria, and microsome were investigated for a period of 42 d after common bile duct ligation. Both the mitochondrial and microsomal benzoyltransferases showed significant increase in their activities between the 1st and 7th day after common bile duct ligation, although the cytosolic benzoyltransferase activity did not show a significant change compared to the activities from the sham-operated control. The cytosolic phenylacetyltransferase activity showed a significant increase between the 1st and 2nd day, the mitochondrial activity showed a significant increase between the 2nd and 7th day, and microsomal activity showed a significant increase between the 1st and 7th day, respectively. Enzyme kinetic parameters of hepatic benzoyltransferase were analyzed using benzoyl coenzyme A as a substrate with the preparations from the 1st day post-ligation. Enzyme parameters of hepatic phenylacetyltransferase were also analyzed using phenylacetyl coenzyme A as a substrate with the preparations from the 2nd day post-ligation. The results indicated that although the $K_m$ values of these enzymes were about the same as the sham-operated control, the $V_{max}$ values of both enzymes increased significantly. These results, therefore, suggest that the biosynthesis of benzoyltransferase and phenylacetyltransferase has been induced in response to cholestasis.

  • PDF

Cryo-Ability of Boar Sperm sorted by Percoll Containing of Antioxidative Enzyme (항산화 효소가 첨가된 Percoll에 의해 분리한 돼지 정액의 동결-융해 능력)

  • Lee, Kyung-Jin;Lee, Sang-Hee;Joo, Seon-Ho;Kim, Yu-Jin;Yang, Jin-Woo;Lee, Yeon-Ju;Hwangbo, Yong;Lee, Seunghyung;Lee, Seung Tae;Lee, Eunsong;Park, Choon-Keun
    • Journal of Embryo Transfer
    • /
    • v.30 no.3
    • /
    • pp.121-128
    • /
    • 2015
  • The objective of this study was to evaluate the efficiency of sperm cryosurvival in boar sperm separated by Percoll containing antioxidant enzymes. The boar semen was collected into a pre-warmed ($37^{\circ}C$) thermos bottle by gloved-hand method and was separated by 65% Percoll with superoxide dismutase (SOD), catalase (CAT) and glutathione (GSH) before freezing. The frozen sperm was thawed at $38.5^{\circ}C$ for 45 sec in water-bath for sperm characteristic analysis. The sperm were estimated with SYBR14/PI double staining for viability, FITC-PNA/PI double staining for acrosome reaction, Rhodamine123/PI double staining for mitochondrial integrity and were analyzed using flow cytometry. In results, sperm viability, acrosome reaction and mitochondrial integrity were improved in separated sperm groups compared with unseparated sperm by Percoll (UP) group. Especially, viability was significantly higher in sperm separated by Percoll containing 400 IU CAT group compared with other groups (P<0.05). And acrosome reaction was decreased in sperm separated by Percoll with 300 IU SOD, 400 IU CAT and 0.5 mM GSH groups compared with other groups, however, there were no significantly difference mitochondrial integrity among sperm separated by Percoll with antioxidant enzymes. In conclusion, we suggest that use of Percoll containing antioxidant enzymes for sperm separation will be beneficial for sperm cryopreservation in pigs.

Genetic Analysis of Mitochondrial DNA from Korean Oysters, Crassostrea gigas (한국산 참굴(Crassostrea gigas) 미토콘드리아 DNA의 유전적 분석)

  • KIM Sang Hae;PARK Mi Seon;KIM Young Hun;PARK Doo Won
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.5
    • /
    • pp.804-808
    • /
    • 1997
  • The genetic differentiation and characteristics of two oyster populations (Crassostrea gigas) in Korea were assessed based on the restriction fragment length polymorphisms (RFLP) analysis and the restriction patterns of subcloned mtDNA. The restriction fragments of twenty individuals in West Sea revealed an identical pattern, determined by 8 restriction enzymes. On the other hand, two haplotypes having variation at the HindIII site were shown in the specimens from South Sea; minor haplotypes (4 of 20) were similar to the results obtained from individuals in West Sea while major haplotypes were different from those in West Sea. It was suggested that oysters (C. gigas) of West Sea might have been introduced to South Sea. Each mitochondrial DNA from two oyster populations in Korea and from one in Japan was divided to three parts and subcloned into pUC19 to use in genetic studies effectively. Restriction map was constructed based on the cleavage pattern by multiple restriction enzymes.

  • PDF

Effect of Cigarette Smoke Exposure Against Oxidative Damage in Scrapie-infected Mice

  • Sohn, Hyung-Ok;Moon, Ja-Young;Lim, Heung-Bin;Lee, Dong-Wook
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.31 no.1
    • /
    • pp.29-38
    • /
    • 2009
  • Although prion diseases, a group of fatal neurodegenerative diseases of human and animals, are presumed to be caused by several mechanisms including abnormal change of prion protein, oxidative stress is still believed to play a central role in development of the diseases. Cigarette smoking has a few beneficial effects on neuronal diseases such as Alzheimer's disease and Parkinson's disease despite of many detrimental effects. In this study, we investigated how chronic cigarette smoking could exert such beneficial effect against oxidative damage. For this study, homogenates of 87V scrapie-infected brain was inoculated on intracerebral system of IM mice through stereotaxic microinjection and biochemical properties concerning with oxidative stress were examined. The scrapie infection decreased the activity of mitochondrial Mn-containing superoxide dismutase by 50% of the control, meanwhile the effects on other antioxidant enzymes including Cu or Zn-containing superoxide dismutase were not significant. Additionally, the infection elevated superoxide level as well as monoamine oxide-B (MAO-B) in the infected brain. Interestingly, many of the detrimental effects were improved in partial or significantly by long-term cigarette smoke exposure (CSE). CSE not only completely prevented the generation of mitochondrial superoxide but also significantly (p<0.05) decreased the elevated mitochondrial MAO-B activity in the infected brain. Concomitantly, CSE prevented subsequent protein oxidation and lipid peroxidation caused by scrapie infection; however, it did not affect the activities of antioxidant enzymes. These results suggest that chronic exposure of cigarette smoke contribute to in part preventing the progress of neurodegeneration caused by scrapie infection.

Mitochondrial DNA Analysis of the Small Yellow Croaker (Pseudosciaena polyactis Bleeker) in the Yellow Sea (황해산 참조기 (Pseudosciaena polyactis Bleeker)의 mitochondrial DNA 분석)

  • HWANG Gyu-Lin;LEE Yong-Chul;CHANG Chung-Soon;HUE Hoi-Kwon
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.27 no.5
    • /
    • pp.613-619
    • /
    • 1994
  • To investigate the population differences of small yellow croaker (Pseudosciaena polyactis BLEEKER) in the Yellow Sea, five catching sites (three from China; Zoushan, Shanghai and Qingdao, two from Korea; Inchon and Mokpo) were selected for sampling. The populations of small yellow croaker from all five catching sites were investigated to analyze their mtDNA's restriction fragment length polymorphism (RFLP) using 18 kinds of restriction enzymes. The average molecular size of the entire mtDNA was estimated at $16.9{\pm}0.6\;kb$. According to the results of RFLP analysis, a total of 40 restriction sites were identified in every population surveyed and the overall cleavage patterns of mtDNA, based on the RFLP, showed similar tendencies. However, the five restriction enzymes such as ApaI, EcoRI, PstI, SmaI and SstII showed slightly different cleavage patterns which could have resulted from individual variations between the populations of Korea and China.

  • PDF

Peroxiredoxin 3 Has Important Roles on Arsenic Trioxide Induced Apoptosis in Human Acute Promyelocytic Leukemia Cell Line via Hyperoxidation of Mitochondrial Specific Reactive Oxygen Species

  • Mun, Yeung-Chul;Ahn, Jee Young;Yoo, Eun Sun;Lee, Kyoung Eun;Nam, Eun Mi;Huh, Jungwon;Woo, Hyun Ae;Rhee, Sue Goo;Seong, Chu Myong
    • Molecules and Cells
    • /
    • v.43 no.9
    • /
    • pp.813-820
    • /
    • 2020
  • NB4 cell, the human acute promyelocytic leukemia (APL) cell line, was treated with various concentrations of arsenic trioxide (ATO) to induce apoptosis, measured by staining with 7-amino-actinomycin D (7-AAD) by flow cytometry. 2', 7'-dichlorodihydro-fluorescein-diacetate (DCF-DA) and MitoSOX™ Red mitochondrial superoxide indicator were used to detect intracellular and mitochondrial reactive oxygen species (ROS). The steady-state level of SO2 (Cysteine sulfinic acid, Cys-SO2H) form for peroxiredoxin 3 (PRX3) was measured by a western blot. To evaluate the effect of sulfiredoxin 1 depletion, NB4 cells were transfected with small interfering RNA and analyzed for their influence on ROS, redox enzymes, and apoptosis. The mitochondrial ROS of NB4 cells significantly increased after ATO treatment. NB4 cell apoptosis after ATO treatment increased in a time-dependent manner. Increased SO2 form and dimeric PRX3 were observed as a hyperoxidation reaction in NB4 cells post-ATO treatment, in concordance with mitochondrial ROS accumulation. Sulfiredoxin 1 expression is downregulated by small interfering RNA transfection, which potentiated mitochondrial ROS generation and cell growth arrest in ATO-treated NB4 cells. Our results indicate that ATO-induced ROS generation in APL cell mitochondria is attributable to PRX3 hyperoxidation as well as dimerized PRX3 accumulation, subsequently triggering apoptosis. The downregulation of sulfiredoxin 1 could amplify apoptosis in ATO-treated APL cells.

Alterations of Antioxidant Status and Mitochondrial Succinate Dehydrogenase Activity in the Liver of Wistar Strain Albino Rats Treated with by Ethanol Extracts of Annona senegalensis Pers (Annonaceae) Stem Bark

  • Adisa, Rahmat Adetutu;Kolawole, Naimat;Sulaimon, Lateef A.;Brai, Bathlomew;Ijaola, Abraham
    • Toxicological Research
    • /
    • v.35 no.1
    • /
    • pp.13-24
    • /
    • 2019
  • Numerous ethnomedicinal uses have been attributed to different parts of Annona senegalensis (ASE), including its uses as food and food additives. The present study investigated toxicological and antioxidant effects of 28 days administration of ethanol extracts of ASE stem bark to Wistar strain albino rats. Acute toxicity test was done to determine lethal dose in Wistar rats while sub-acute toxicity test was conducted on rats divided into four groups (A - control, B - 50 mg/kg, C - 100 mg/kg, D - 150 mg/kg, respectively and treated for 28 days. Oxidative stress markers in liver and kidney as well as hepatic succinate dehydrogenase activity in the mitochondrial and post mitochondrial fractions (PMF) were evaluated. The $LD_{50}$ value of ASE was > 2,000 mg/kg. White blood cell counts gradually increased, but red blood cell counts and haematocrits level decreased significantly (p < 0.05) by about 50%. Liver enzymes in the serum and mitochondrial succinate dehydrogenase activity increased significantly (p < 0.05). Superoxide dismutase and catalase activities also increased in liver mitochondria and PMF while malondialdehyde (MDA) and reduced glutathione levels increased only in the PMF. Furthermore, only MDA levels increased significantly in the kidney after 28 days extract administration. Histopathological examination showed hepatic necrosis and no obvious signs of nephrotoxicity. Anona senegalensis is relatively safe, but prolonged ingestion could induce oxidative stress and impair ATP synthesis through the modulation of the activity of mitochondrial succinate dehydrogenase.

Effects of Wearing Bio-active Material Coated Fabric against γ-irradiation-induced Cellular Damage in Sprague-Dawley Rats

  • Kang, Jung Ae;Kim, Hye Rim;Yoon, Sunhye;Nam, You Ree;Park, Sang Hyun;Go, Kyung-Chan;Yang, Gwang-Wung;Rho, Young-Hwan;Park, Hyo-Suk;Jang, Beom Su
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.3
    • /
    • pp.206-210
    • /
    • 2016
  • Background: Ionizing radiation causes cellular damage and death through the direct damage and/or indirectly the production of ROS, which induces oxidative stress. This study was designed to evaluate the in vivo radioprotective effects of a bio-active material coated fabric (BMCF) against ${\gamma}$-irradiation-induced cellular damage in Sprague-Dawley (SD) rats. Materials and Methods: Healthy male SD rats wore bio-active material coated (concentrations in 10% and 30%) fabric for 7 days after 3 Gy of ${\gamma}$-irradiation. Radioprotective effects were evaluated by performing various biochemical assays including spleen and thymus index, WBC count, hepatic damage marker enzymes [aspartate transaminase (AST) and alanine transaminase (ALT)] in plasma, liver antioxidant enzymes, and mitochondrial activity in muscle. Results and Discussions: Exposure to ${\gamma}$-irradiation resulted in hepatocellular and immune systemic damage. Gamma-irradiation induced decreases in antioxidant enzymes. However, wearing the BMCF-30% decreased significantly AST and ALT activities in plasma. Furthermore, wearing the BMCF-30% increased SOD (superoxide dismutase) and mitochondrial activity. Conclusion: These results suggest that wearing BMCF offers effective radioprotection against ${\gamma}$-irradiation-induced cellular damage in SD rats.