Mitochondrial DNA Analysis of the Small Yellow Croaker (Pseudosciaena polyactis Bleeker) in the Yellow Sea

Gyu-Lin HWANG, Yong-Chul LEE, Chung-Soon CHANG* and Hoi-Kwon HUE

Department of Oceanography, College of Natural Sciences, Inha University
*Department of Biochemistry, College of Medicine, Inha University

To investigate the population differences of small yellow croaker (Pseudosciaena polyactis Bleecker) in the Yellow Sea, five catching sites (three from China; Zoushan, Shanghai and Qingdao, two from Korea; Incheon and Mokpo) were selected for sampling. The populations of small yellow croaker from all five catching sites were investigated to analyze their mtDNA's restriction fragment length polymorphism (RFLP) using 18 kinds of restriction enzymes. The average molecular size of the entire mtDNA was estimated at 16.9 ± 0.6 kb. According to the results of RFLP analysis, a total of 40 restriction sites were identified in every population surveyed and the overall cleavage patterns of mtDNA, based on the RFLP, showed similar tendencies. However, the five restriction enzymes such as Apal, EcoRI, PstI, Smal and SstII showed slightly different cleavage patterns which could have resulted from individual variations between the populations of Korea and China.

序 論

漁業資源学（fishery dynamics）側面에서 지속적
인수산자원 어획고의 조절은 어획 대상어종의水産生態, 1차 生産量 및 水系地理學(hydrography)의
 이해와 관리에 있다고 하겠다. 여기서 대상생물의
 연구단위는 個體群(population), 또는 系群(stock)
이 된다.

 초기 학자들은 몇 가지 形態形質의 차이만을 대
상으로 하였는데 이 방법은 고전적인 것으로 垂直
骨數, 지느리미 삶수, 각 부위별 비율의 차이 등을
 비교하여 집단 水性에 이용하였다(Schmidt, 1909; Le Gall, 1935; Fukuhara et al., 1962; Royce, 1964).
그러나 같은 계군이라 할지라도 水域環境에 따라
 일부 形態적 차이가 있음을 있기 때문에 形態적
形質만에 의한 계군 水性에는 많은 어류들이 내
되어 있다.

이러한 어류들을 해결하고자 種分化 문제나 分
類上 어류운 종의 遺傳的 近緣關係의 해석에 分子
生物學의 方法論이나 기타 生化學의 또는 免疫學

본 연구는 1992년에서 1993년까지 인하대학교에서 수행된 허희권 박사의 박사후과정 연구의

일부임.

수산생물들은 대상으로, mtDNA RFLP을 이용한 연구로 Avise et al. (1984)은 Lepomis 종에 속하는 sunfish에서 intraspecific divergence가 있음을 보고하였고, 이외에도 두개골 수지류인 Salmo clarki, S. gairdnerii 및 Salvelinus 종(Johnsen et al., 1985; Wilson et al., 1985) 등과 흑대상 분야인 Oncorhyncus 종(Thomas et al., 1986), 또한 Alosa sapidissima (Bentzen et al., 1988)에 대한 연구가 있다.

참조기(Pseudosciaena polyactis)는 황해 남쪽과 동해 주부에서 잠재하는 어류의 가운데 매우 중요한 정어류류(demersal species)로, 염해, 연어류, 포유류, 섬유류로 구성되어 있다(Yamada et al., 1986). 한편에서의 1940년대에서 1950년대 초에 이르는 어가 회수를 기록하였고 그 후 급격히 감소하여 이에 대한 관리가 요구되고 있다.

본 연구에서는 위에 열거한 여러 연구에서 입증된 실험적 결과를 중심으로 한국내 어류 및 고기 지역과 중국 연안 지역(Qingdao, Shanghai, Zoushan)을 선정하여 그 지역에서 서식하는 참조기 mtDNA의 제한효소 절편양상을 분석하여 종내 유전적 변이를 밝히고 이를 이용한 이외에 다양한 방법을 실시하고자 하였다.

材料 및 方法

본 연구에 이용된 시료의 채집은 黃海産 참조기 중 중국의 인천 및 목포 해역과 중국 연해주의 Qingdao(113個), Shanghai(142個) 및 Zoushan (184個) 해역을 대상으로 실시하였으며 채집 일시, 장소 및 개체수는 Fig. 1과 같다. 중국의 시료는 중국科学院 海洋研究所의 도움으로 채집하였고, 채

![Fig. 1. Map showing the sampling sites and dates. Numbers in the parenthesis indicate total number of individuals from each site.](image-url)

mtDNA의 추출은 Mulligan and Chapman(1989)의 방법을 응용하여 실시하였다. 실험실에 공급된 시료로의 둥(egg)을 선택하여 조직 20g에 30ml의 cold TEK buffer(50mM Tris, 10mM EDTA, 1.5% KCl, pH 7.5)를 넣어 마쇄한 다음 1,000×g에서 20분간 2회 봉원에 분리하여 해와 mitochondria를 분리하였다.
황해산 참조기(Prionospiokeana polyactis Bleeker)의 mitochondria DNA 분석

buffer에 녹여서 1% 되게 부가한 후 4℃에서 30분간 방치하여 mitochondria의 막을 파괴하였다. 이것을 다시 12,000×g에서 10분간 원심분리한 후 상동액에 동일한 TE saturated phenol을 넣어 5분간 방치한 위 원심분리(12,000×g, 2℃)하여 단백질을 천천히 상동액을 PC(phenol : chloroform = 1:1)용액으로 처리한 후 동일조건으로 원심 분리하여 단백질을 완전히 제거하였다. 이후 chloroform과 isoamyl alcohol(24:1, V/V)을 첨가하여 원심분리 후 청명한 phenol을 제거하였다. 이 상동액에 cold ethyl alcohol(95%)를 1:2 비율로 넣고 -20℃에서 24시간 방치한 다음 12,000×g에서 15분간 원심 분리하여 mtDNA를 얻었다. 이상과 같이 분리된 mtDNA에 적당한 TE buffer(10mM Tris, 0.5mM EDTA, pH 8.0)의 용액을 넣고 분주 보관(-20℃)하여 실험에 사용하였다.

이후 six base recognition endonuclease인 ApaI, BamH1, BglI, BstEII, CiaI, EcoRI, KpnI, NcoI, NsiI, PstI, PvuII, SacI, Smal, SstI, SstII, XhoI 및 XbaI 등 18종의 제한효소를 이용하여 적절한 온도에서 mtDNA를 digestion 시켰다.

전기泳泳은 0.8% agarose gel을 사용하였으며 (pH 8.05, TEA buffer : 40mM Tris, 20mM sodium acetate, 2mM EDTA, 10mM NaCl), ethidium bromide로 염색 후 U.V. light 하에서 촬영하였다. Marker로는 HindIII로 절단한 λDNA를 사용하였다.

동일하게 각각 7.5kb, 5.4kb와 3.8kb의 3개의 절편을 갖는 A type과 11.5kb와 5.4kb의 2개의 절편을 갖는 B type이 관찰되었으며 한국 2집단은 모두 A type을 보였다(Fig. 3). PstI에 의한 질편양상은 한국

結果

mtDNA의 restriction fragment length polymorphism(RFLP)를 이용한 계군분석을 위하여 한국의 2지역과 중국의 3지역에서 채집한 참조기의 mtDNA를 분석한 전기영동상을 marker DNA의 분자량과 비교 분석하여 얻은 각 지역의 제한효소별 절편의 분자량은 Table 1과 같다.

18종의 제한효소에 의한 질편양상은 5개 지역의 기본적으로 모두 동일하였으며(A type, ApaI, EcoRI, PstI, Smal 및 SstII에서 일부 절단선 또는 절단안 차이를 보였다(B type).

ApaI로 처리한 인천지역 참조기 mtDNA 절편 양상을 보면 7.5kb, 5.2kb, 2.3kb 및 1.7kb의 4개의 절편을 갖는 A type과 9.3kb, 6.8kb의 2개의 절편을 갖는 B type의 diff도 나타났으며 바이리 지역은 모두 A type만을 보이고 있다(Fig. 2). EcoRI에 의한 질편양상에서는 중국의 184, 113 및 142 염구가

Fig. 2. Electrophoretic patterns of mtDNA restriction fragments digested with ApaI. Arrows indicate the differences of the Inchon population which are considered as a "B" type in Table 1. Marker is λDNA digested with HindIII unit (kb). (M: marker, 1; Mokpo, 2; Inchon, 3; site 184, 4; site113, 5; site142)

Fig. 3. Electrophoretic patterns of mtDNA restriction fragments digested with EcoRI. Arrows indicate the differences of the Chinese populations which are considered as a "B" type in Table 1. Marker is λDNA digested with HindIII unit (kb). (M: marker, 1; Mokpo, 2; Inchon, 3; site 184, 4; site113, 5; site142)
Table 1. Molecular sizes estimated from restriction fragments using the mtDNA of small yellow croaker in the Yellow Sea. In each study locations, "--" means that fragment size of B type is equal to that of A type
(1: Mokpo, 2: Inchon, 3: site84, 4: site113, 5: site142)

<table>
<thead>
<tr>
<th>LOCAL</th>
<th>ENZYME</th>
<th>A</th>
<th>B</th>
<th>A</th>
<th>B</th>
<th>A</th>
<th>B</th>
<th>A</th>
<th>B</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>2</td>
<td></td>
<td>3</td>
<td></td>
<td>4</td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ApaI</td>
<td>7.5</td>
<td>-</td>
<td>7.5</td>
<td>-</td>
<td>7.5</td>
<td>-</td>
<td>7.5</td>
<td>-</td>
<td>7.5</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.2</td>
<td>-</td>
<td>5.2</td>
<td>-</td>
<td>5.2</td>
<td>-</td>
<td>5.2</td>
<td>-</td>
<td>5.2</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.3</td>
<td>-</td>
<td>2.3</td>
<td>-</td>
<td>2.3</td>
<td>-</td>
<td>2.3</td>
<td>-</td>
<td>2.3</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.7</td>
<td>-</td>
<td>1.7</td>
<td>-</td>
<td>1.7</td>
<td>-</td>
<td>1.7</td>
<td>-</td>
<td>1.7</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>BamHI</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td>BgiI</td>
<td>12.0</td>
<td>-</td>
<td>12.0</td>
<td>-</td>
<td>12.0</td>
<td>-</td>
<td>12.0</td>
<td>-</td>
<td>12.0</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.6</td>
<td>-</td>
<td>2.6</td>
<td>-</td>
<td>2.6</td>
<td>-</td>
<td>2.6</td>
<td>-</td>
<td>2.6</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.6</td>
<td>-</td>
<td>1.6</td>
<td>-</td>
<td>1.6</td>
<td>-</td>
<td>1.6</td>
<td>-</td>
<td>1.6</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.4</td>
<td>-</td>
<td>1.4</td>
<td>-</td>
<td>1.4</td>
<td>-</td>
<td>1.4</td>
<td>-</td>
<td>1.4</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17.6</td>
<td>-</td>
<td>17.6</td>
<td>-</td>
<td>17.6</td>
<td>-</td>
<td>17.6</td>
<td>-</td>
<td>17.6</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>BstEII</td>
<td>17.0</td>
<td>-</td>
<td>17.0</td>
<td>-</td>
<td>17.0</td>
<td>-</td>
<td>17.0</td>
<td>-</td>
<td>17.0</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17.0</td>
<td>-</td>
<td>17.0</td>
<td>-</td>
<td>17.0</td>
<td>-</td>
<td>17.0</td>
<td>-</td>
<td>17.0</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>ClaI</td>
<td>17.5</td>
<td>-</td>
<td>17.5</td>
<td>-</td>
<td>17.5</td>
<td>-</td>
<td>17.5</td>
<td>-</td>
<td>17.5</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17.5</td>
<td>-</td>
<td>17.5</td>
<td>-</td>
<td>17.5</td>
<td>-</td>
<td>17.5</td>
<td>-</td>
<td>17.5</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>EcoRI</td>
<td>7.5</td>
<td>-</td>
<td>7.5</td>
<td>-</td>
<td>7.5</td>
<td>11.5</td>
<td>11.5</td>
<td>11.5</td>
<td>11.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.4</td>
<td>-</td>
<td>5.4</td>
<td>-</td>
<td>5.4</td>
<td>7.5</td>
<td>7.5</td>
<td>7.5</td>
<td>7.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.8</td>
<td>-</td>
<td>3.8</td>
<td>-</td>
<td>3.8</td>
<td>5.4</td>
<td>5.4</td>
<td>5.4</td>
<td>5.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>16.7</td>
<td>-</td>
<td>16.7</td>
<td>-</td>
<td>16.7</td>
<td>16.9</td>
<td>16.9</td>
<td>16.9</td>
<td>16.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>KpnI</td>
<td>13.7</td>
<td>-</td>
<td>13.7</td>
<td>-</td>
<td>13.7</td>
<td>-</td>
<td>13.7</td>
<td>-</td>
<td>13.7</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.3</td>
<td>-</td>
<td>3.3</td>
<td>-</td>
<td>3.3</td>
<td>-</td>
<td>3.3</td>
<td>-</td>
<td>3.3</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17.0</td>
<td>-</td>
<td>17.0</td>
<td>-</td>
<td>17.0</td>
<td>-</td>
<td>17.0</td>
<td>-</td>
<td>17.0</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>NcoI</td>
<td>8.7</td>
<td>-</td>
<td>8.7</td>
<td>-</td>
<td>8.7</td>
<td>-</td>
<td>8.7</td>
<td>-</td>
<td>8.7</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.3</td>
<td>-</td>
<td>3.3</td>
<td>-</td>
<td>3.3</td>
<td>-</td>
<td>3.3</td>
<td>-</td>
<td>3.3</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15.3</td>
<td>-</td>
<td>15.3</td>
<td>-</td>
<td>15.3</td>
<td>-</td>
<td>15.3</td>
<td>-</td>
<td>15.3</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>NeoI</td>
<td>11.9</td>
<td>-</td>
<td>11.9</td>
<td>-</td>
<td>11.9</td>
<td>-</td>
<td>11.9</td>
<td>-</td>
<td>11.9</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.9</td>
<td>-</td>
<td>5.9</td>
<td>-</td>
<td>5.9</td>
<td>-</td>
<td>5.9</td>
<td>-</td>
<td>5.9</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16.9</td>
<td>-</td>
<td>16.9</td>
<td>-</td>
<td>16.9</td>
<td>-</td>
<td>16.9</td>
<td>-</td>
<td>16.9</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>PstI</td>
<td>9.9</td>
<td>-</td>
<td>9.9</td>
<td>-</td>
<td>9.9</td>
<td>-</td>
<td>9.9</td>
<td>-</td>
<td>9.9</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7.7</td>
<td>-</td>
<td>7.7</td>
<td>-</td>
<td>7.7</td>
<td>-</td>
<td>7.7</td>
<td>-</td>
<td>7.7</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17.6</td>
<td>18.0</td>
<td>17.6</td>
<td>18.0</td>
<td>17.6</td>
<td>18.0</td>
<td>17.6</td>
<td>18.0</td>
<td>17.6</td>
<td>18.0</td>
</tr>
<tr>
<td></td>
<td>PsuII</td>
<td>8.5</td>
<td>-</td>
<td>8.5</td>
<td>-</td>
<td>8.5</td>
<td>-</td>
<td>8.5</td>
<td>-</td>
<td>8.5</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.5</td>
<td>-</td>
<td>6.2</td>
<td>-</td>
<td>6.2</td>
<td>-</td>
<td>6.2</td>
<td>-</td>
<td>6.2</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.2</td>
<td>-</td>
<td>2.3</td>
<td>-</td>
<td>2.3</td>
<td>-</td>
<td>2.3</td>
<td>-</td>
<td>2.3</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17.2</td>
<td>-</td>
<td>17.2</td>
<td>-</td>
<td>17.2</td>
<td>-</td>
<td>17.2</td>
<td>-</td>
<td>17.2</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>SacI</td>
<td>17.0</td>
<td>-</td>
<td>17.0</td>
<td>-</td>
<td>17.0</td>
<td>-</td>
<td>17.0</td>
<td>-</td>
<td>17.0</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17.0</td>
<td>-</td>
<td>17.0</td>
<td>-</td>
<td>17.0</td>
<td>-</td>
<td>17.0</td>
<td>-</td>
<td>17.0</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Smal</td>
<td>13.5</td>
<td>-</td>
<td>13.5</td>
<td>-</td>
<td>13.5</td>
<td>-</td>
<td>13.5</td>
<td>-</td>
<td>13.5</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.3</td>
<td>-</td>
<td>3.3</td>
<td>-</td>
<td>3.3</td>
<td>-</td>
<td>3.3</td>
<td>-</td>
<td>3.3</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16.8</td>
<td>-</td>
<td>16.8</td>
<td>-</td>
<td>16.8</td>
<td>-</td>
<td>16.8</td>
<td>-</td>
<td>16.8</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>SsiI</td>
<td>17.0</td>
<td>-</td>
<td>17.0</td>
<td>-</td>
<td>17.0</td>
<td>-</td>
<td>17.0</td>
<td>-</td>
<td>17.0</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17.0</td>
<td>-</td>
<td>17.0</td>
<td>-</td>
<td>17.0</td>
<td>-</td>
<td>17.0</td>
<td>-</td>
<td>17.0</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>SstII</td>
<td>6.4</td>
<td>-</td>
<td>6.4</td>
<td>-</td>
<td>6.4</td>
<td>-</td>
<td>6.4</td>
<td>-</td>
<td>6.4</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.4</td>
<td>-</td>
<td>4.4</td>
<td>-</td>
<td>4.4</td>
<td>-</td>
<td>4.4</td>
<td>-</td>
<td>4.4</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.7</td>
<td>-</td>
<td>3.7</td>
<td>-</td>
<td>3.7</td>
<td>-</td>
<td>3.7</td>
<td>-</td>
<td>3.7</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.8</td>
<td>-</td>
<td>1.8</td>
<td>-</td>
<td>1.8</td>
<td>-</td>
<td>1.8</td>
<td>-</td>
<td>1.8</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16.3</td>
<td>16.5</td>
<td>16.3</td>
<td>16.5</td>
<td>16.3</td>
<td>16.5</td>
<td>16.3</td>
<td>16.5</td>
<td>16.3</td>
<td>16.5</td>
</tr>
<tr>
<td></td>
<td>XbaI</td>
<td>12.8</td>
<td>-</td>
<td>12.8</td>
<td>-</td>
<td>12.8</td>
<td>-</td>
<td>12.8</td>
<td>-</td>
<td>12.8</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.7</td>
<td>-</td>
<td>3.7</td>
<td>-</td>
<td>3.7</td>
<td>-</td>
<td>3.7</td>
<td>-</td>
<td>3.7</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16.5</td>
<td>-</td>
<td>16.5</td>
<td>-</td>
<td>16.5</td>
<td>-</td>
<td>16.5</td>
<td>-</td>
<td>16.5</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>XhoI</td>
<td>17.5</td>
<td>-</td>
<td>17.5</td>
<td>-</td>
<td>17.5</td>
<td>-</td>
<td>17.5</td>
<td>-</td>
<td>17.5</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17.5</td>
<td>-</td>
<td>17.5</td>
<td>-</td>
<td>17.5</td>
<td>-</td>
<td>17.5</td>
<td>-</td>
<td>17.5</td>
<td>-</td>
</tr>
</tbody>
</table>
만약, SstII에 의한 양상에서는 한국의 목포, 인천 점단만이 A type과 B type의 두가지 절편양상을 보이고 나머지 점단은 모두 동일한 A type을 보이고 있다(Fig. 5, Fig. 6).

본 연구에서 처리된 18 종류의 제한효소 중 BstEII, ClaI, SacI, SstI 및 XhoI에 의한 참조기 mtDNA의 절편양상은 1개의 제한효소 인식부위를 갖는 것으로 나타났으며(Table 1), BamHI의認識 부분은 5지역 모두 나타나지 않았다. 본 연구에서 18 종의 제한효소에 의한 5개 지역의 참조기 mtDNA RFLP에서 1개 이상의 절편을 갖는 전체 절편수는 A type의 경우 총 40개이며, B type의 경우 점단간 차이를 보여 목포 38개, 인천 37개, 중국 3점단 모두 39개의 절편수를 보였으며 조사지역 참조기 mtDNA의 평균 분자량은 16.9 ± 0.6kb 이었다.

Fig. 4. Electrophoretic patterns of mtDNA restriction fragments digested with PsI. Arrows indicate the differences of the Mokpo and Inchon population which are considered as a "B" type in Table 1. Marker is λDNA digested with HindIII(unit: kb). (M; marker, 1; Mokpo, 2; Inchon, 3; site 184, 4; site 113, 5; site 142)

Fig. 5. Electrophoretic patterns of mtDNA restriction fragments digested with SmaI. Arrows indicate the differences of the Inchon population which are considered as a "B" type in Table 1. Marker is λDNA digested with HindIII(unit: kb). (M; marker, 1; Mokpo, 2; Inchon, 3; site 184, 4; site 113, 5; site 142)

Fig. 6. Electrophoretic patterns of mtDNA restriction fragments digested with SstII. Arrows indicate the differences of the Mokpo and Inchon population which are considered as a "B" type in Table 1. Marker is λDNA digested with HindIII(unit: kb). (M; marker, 1; Mokpo, 2; Inchon, 3; site 184, 4; site 113, 5; site 142)
Mulligan과 Chapman(1989)은 미국 Chesapeake
해에서 서식하고 있는 white perch(Morone americana)
의 mtDNA를 이용하여 분석한 결과 3개 계군
이 존재함을 발견하였고, 특이지역의 경우 계군의
혼합현상이 일어나고 있으며, 한계의 개체가 여러
개의 서로 다른 단일복 제복적 현상을 포함하고 있는
heteroplasmy 현상을 나타내고 있음을 보고한 바
있다. 그러나 본 연구에서 관찰된 B type의 경우에는
heteroplasmy보다는 시료의 양이 적은 관계로 여러
개체를 혼합하여 사용한 결과로 나타난 개체의
종과 계군의 갈등적 gf은 모두 관찰
한다고 생각된다. *Apal* 제한효소에 의한 인천지역
참조기의 천연으로 9.3kb와 6.8kb의 절
편은 A type의 7.5kb와 2.3kb 절편 및 5.2kb와 1.7kb
절편의 각각의 합과 분자량이 비슷하여 A type이
부분적으로 cleavage 되었거나 내포된 현상을 보여주며, 어로
기의 빈번하게 B type이 있는 것으로 보아 위와 같은 reasons
를 사료된다. 한국의 목포와 인천에서 A type이 나타난
PstI, StII 제
한효소의 경우나 EcoRI 제한효소에 의한 중국의 3
개 지역 참조기의 B type의 11.5kb 절편은 A type의
7.5kb와 3.8kb 절편의 그로 분자량이 비슷하여 유
사한 결과로 생각되어 이는 개체의 분자량이 좀 더
연구되어야 할 과제라고 생각된다.
분석된 황해산 참조기 mtDNA의 평균 분자량은
16.9 ± 0.6kb로 미리 연구된 다른 어류군과 유사하
있다(Billington and Hebert, 1991).
어미의 결과에서는 같이 한국 및 중국 인근해의
5개 지역에서 체적된 참조기 난소로부터 얻은 mt-
DNA의 제한효소 절편 양상은 빈번하게 제한효소에
서 분석한 결과와 같은 특성을 갖고 있으며 이러한
결과에 미루어 볼때 한국 및 중국의 5개 지역에서
의 참조기 난소의 mitochondrial DNA는 기본적으
로 모두 indicates gene를 소유한 동일한 양상으로 생
각되며 대부분은 절편간 차이를 갖는 개체변이
의 혼란 가능성이 관찰되었다.

요 약

황해에 서식하는 참조기(Pseudosciacaena polyactis
Bleeker)각 계군의 간의 차이점은 분석하기
위하여 중국의 3지역(Zhoushan, Shanghai, Qing-
dao), 한국 2지역(목포, 인천)에서 채집된 참조기
로부터 mitochondrial DNA(mtDNA)의 RFLP(제한
효소 절편 모형)를 분석하였다.
총 18종의 제한효소를 이용하여 처리한 결과
5개 계군 모두 동일한 크기인 16.9 ± 0.6kb의 mtDNA을
소유한 것으로 나타났으며 이는 다른 어류군들과
유사한 크기이다. 참조기 mtDNA에 대한 RFLP 분
석을 행한 결과 각 계군마다 대략 40여개의 절편
이 관찰되었고 5개 계군 모두 동일한 mtDNA 절편
모형을 보였으나 사용된 제한효소 중 Apal, EcoRI,
PstI, StII 및 Smal에서 중국과 한국 집단의 또는
절편간 정렬 양상의 차이도 관찰할 수 있었다.

참고 문헌
김익수· 이종영· 양서영. 1985. 한국산 황어와
어류의 계통 분류학적 연구. 한국수산학회지
18(4): 381~400.
양서영. 1983. 남구부 아과 수종의 유전적변이에
관하여. 생물학적연구언보, 전북대 4: 24~32.
The use of restriction endonucleases to mea-
sure mitochondrial DNA sequence relatedness
in natural populations. I. Population structure
and evolution in the genus *Peromyscus*. Gene-
tics, 92, 279~295.
Avise, J. C., A. Bermingham, L. G. Kissler and N.
C. Saunders. 1984. Characterization of mito-
chondrial DNA variability in a hybrid swarm
between subspecies of bluegill sunfish (Lepomis
macrourus). Evolution, 38, 931~941.
Avise, J. C. 1986. Mitochondrial DNA and the
evolutionary genetics of higher animals. Phil.
Trans. R. Soc. Lond, B312, 325~342.
Avise, J. C., J. Arnold, R. M. Ball, E. Bermingham,
T. Lamb, J. E. Neigel, C. A. Reeb and N. C.
Saunders. 1987. Interspecific phylogeography:
the mitochondrial DNA bridge between popula-
Syst., 18, 489~522.
Length and restriction site heteroplasmy in the
mitochondrial DNA of American shad (Alosa
sapidissima). Genetics, 118, 509~518.
Berg, W. J., and S. D. Ferris. 1984. Restriction en-