Effect of Cigarette Smoke Exposure Against Oxidative Damage in Scrapie-infected Mice

  • Sohn, Hyung-Ok (KT&G Central Research Institute) ;
  • Moon, Ja-Young (Department of Biochemistry and Health Sciences, College of Natural Sciences, Changwon National University) ;
  • Lim, Heung-Bin (Department of Industrial Plant Science & Technology, College of Agriculture, Chungbuk National University) ;
  • Lee, Dong-Wook (Natural Resources Research Institute)
  • Received : 2009.06.10
  • Published : 2009.06.25

Abstract

Although prion diseases, a group of fatal neurodegenerative diseases of human and animals, are presumed to be caused by several mechanisms including abnormal change of prion protein, oxidative stress is still believed to play a central role in development of the diseases. Cigarette smoking has a few beneficial effects on neuronal diseases such as Alzheimer's disease and Parkinson's disease despite of many detrimental effects. In this study, we investigated how chronic cigarette smoking could exert such beneficial effect against oxidative damage. For this study, homogenates of 87V scrapie-infected brain was inoculated on intracerebral system of IM mice through stereotaxic microinjection and biochemical properties concerning with oxidative stress were examined. The scrapie infection decreased the activity of mitochondrial Mn-containing superoxide dismutase by 50% of the control, meanwhile the effects on other antioxidant enzymes including Cu or Zn-containing superoxide dismutase were not significant. Additionally, the infection elevated superoxide level as well as monoamine oxide-B (MAO-B) in the infected brain. Interestingly, many of the detrimental effects were improved in partial or significantly by long-term cigarette smoke exposure (CSE). CSE not only completely prevented the generation of mitochondrial superoxide but also significantly (p<0.05) decreased the elevated mitochondrial MAO-B activity in the infected brain. Concomitantly, CSE prevented subsequent protein oxidation and lipid peroxidation caused by scrapie infection; however, it did not affect the activities of antioxidant enzymes. These results suggest that chronic exposure of cigarette smoke contribute to in part preventing the progress of neurodegeneration caused by scrapie infection.

Keywords

References

  1. Abe, M., Reiter, R. J., Orhii, P. H., Hara, M., Poeggeler, B., and Barrow-Walden, L. R. (1994) Inhibitory effect of melatonin on cataract formation in newborn rats: evidence of an antioxidative role for melatonin. J. Pineal Res. 17, 94-100 https://doi.org/10.1111/j.1600-079X.1994.tb00119.x
  2. Carp, R. I., Callahan, S. M., Sersen, E. A. and Moretz, R. C. (1984) Preclinical changes in weight of scrapie infected mice as a function of scrapie agent-mouse strain combination. Intervirol. 21: 61-69 https://doi.org/10.1159/000149503
  3. Cormier, A., Morin, C., Zini, R., Tillement, J. P., and Lagrue, G. (2003) Nicotine protects rat brain mitochondria against experimental injuries. Neuropharmacology 44(5), 642-652 https://doi.org/10.1016/S0028-3908(03)00041-8
  4. Esterbauer, H., Lang, J., Zadravec, S., and Slater, T. F. (1984) Detection of malonaldehyde by high-performance liquid chromatography. Methods Enzymol. 105, 319-28 https://doi.org/10.1016/S0076-6879(84)05041-2
  5. Grandinetti A., Morens D. M., Reed D. and MacEachern D. (1994) Prospective study of cigarette smoking and the risk of developing idiopathic Parkinson's disease. Am. J. Epidemiol. 139(12): 1129-1138 https://doi.org/10.1093/oxfordjournals.aje.a116960
  6. Guentchev, M., Voigtlander, T., Haberler, C., Groschup, M. H., and Budka, H. (2000) Evidence for oxidative stress in experimental prion disease. Neurobiol. Dis. 7, 270-273 https://doi.org/10.1006/nbdi.2000.0290
  7. Habig, W. H., Pabast, M. J., and Jakoby, W. B. (1974) Glutathione-S-transferase. The first enzymatic step in mercapturic acid formation. J. Biol. Chem. 249, 7130-7139
  8. Kim, Y. S., Carp, R. I., Callahan, S. M. and Wisniewski, H. M. (1990) Incubation period and histopathological changes in mice infected stereotaxically in different brain areas with the 87V scrapie strain. Acta Neuropathol. 80: 388-392 https://doi.org/10.1007/BF00307692
  9. Kim, J. I., Choi, S. I., Kim, N. H, Jin, J. K., Choi, E. K, Carp, R. I., and Kim, Y. S. (2001) Oxidative stress and neurodegeneration in prion diseases. Ann N Y Acad Sci. 928, 182-186 https://doi.org/10.1111/j.1749-6632.2001.tb05648.x
  10. Laganiere, S. and Yu, B. P. (1988) Antilipoperoxidation action of food restriction. Biochem. Biophys. Res. Commun. 145, 1185-1191 https://doi.org/10.1016/0006-291X(87)91562-2
  11. Lee, P. N. (1994) Smoking and Alzheimer's disease: A review of the epidemiological evidence. Neuroepidemiol. 13: 131-144 https://doi.org/10.1159/000110372
  12. Lee, D. W., Sohn, H. O., Lim, H. B., Lee, Y. G., Kim, Y. S., Carp, R. I., and Wisniewski, H. M. (1999) Alteration of free radical metabolism in the brain of mice infected with scrapie agent. Free Radic Res. 30(6), 499-507 https://doi.org/10.1080/10715769900300541
  13. Levine, R. L., Garland, D., Oliver, C. N., Amici, A., Climent I., Lenz, A. G.. et al. (1990) Determination of carbonyl content in oxidatively modified proteins. Meth. Enzymol. 186, 464-478 https://doi.org/10.1016/0076-6879(90)86141-H
  14. Linert, W., Bridge, M. H., Huber, M., Bjugstad, K. B., Grossman,S., and Arendash, G. W. (1997) In vitro and in vivo studies investigating possible antioxidant actions of nicotine: relevance to Parkinson's and Alzheimer's diseases. Biochim. Biophys. Acta.1454(2), 143-152
  15. Lowry, O. H., Rosebrough, H. J., Farr, A. B., and Randall, R. J. (1951) Protein measurement with the folin-phenol reagent. J. Biol. Chem. 193, 265-275
  16. McCord, J. R., Colby, M. D., and Fridovich, I. (1972) Superoxide dismutase, enzymatic function for erythrocuprein (hemocuprein). J. Biol. Chem. 231, 6049-6055
  17. Milhavet, O. and Lehmann, S. (2002) Oxidative stress and the prion protein in transmissible spongiform encephalopathies. Brain Res. Rev. 38(3), 328-339 https://doi.org/10.1016/S0165-0173(01)00150-3
  18. Milhavet, O., McMahon, H. E., Rachidi, W., Nishida, N., Katamine, S., Mange, A., Arlotto, M., Casanova, D., Riondel, J., Favier, A., and Lehmann, S. (2000) Prion infection impairs the cellular response to oxidative stress. Proc. Natl Acad. Sci. USA. 97, 13937-13942 https://doi.org/10.1073/pnas.250289197
  19. Morinan, A. and Garratt, H. M. (1985) An improved fluorometric assay for brain monoamine oxidase. J. Pharmacol. Method. 13, 213-223 https://doi.org/10.1016/0160-5402(85)90021-X
  20. Nohl, H. and Hegner, D. (1978) Do mitochondria produce oxygen radicals in vivo? Eur. J. Biochem. 82, 563-567 https://doi.org/10.1111/j.1432-1033.1978.tb12051.x
  21. Prusiner, S. B. (1995) The prion disease. Scientific American 272:30-37
  22. Rajesh, N., Kalaria, R. N., Michell, M. J., and Harik, S. (1987) Correlation of MPTP neurotoxicity with blood-brain barrier monoamine oxidase activity. Proc. Natl. Acad. Sci. USA. 84, 13521-3525
  23. Saura, J., Richards, J. G., and Mahy, N. (1994) Age-related changes on MAO in C57BL mouse tissues: a quantitative radioautographic study. J. Neural. Transm. (Suppl) 41, 89-94
  24. Sohn, H.O., Hyun, H.C., Shin, H. J., Han, J. H., Park, C. H., Moon, J. Y., Lim, H. B. and Lee, D. W. (2005) Cigarette smoke attenuates histopathological and neurobiological changes caused by 87V scrapie agent infection in IM mice. J. Korean Soc. Tob. Sci. 27(2):212-218
  25. Wisniewski, H. M., Merz, G.. S. and Carp, R. I. (1984) Senile dementia of the Alzheimer's type : possibility of an infectious ethiologyin genetically susceptible individuals. Acta Neurol. Scand. Suppl. 69:91-99 https://doi.org/10.1111/j.1600-0404.1984.tb05673.x
  26. Wong, B. S., Brown, D. R., Pan, T., Whiteman, M., Liu, T., Bu, X., Li, R., Gambetti, P., Olesik, J., Rubenstein, R., Sy, M. S. (2001) Oxidative impairment in scrapie-infected mice is associated with brain metals perturbations and altered antioxidant activities. J. Neurochem. 79(3), 689-698 https://doi.org/10.1046/j.1471-4159.2001.00625.x