DOI QR코드

DOI QR Code

Peroxiredoxin 3 Has Important Roles on Arsenic Trioxide Induced Apoptosis in Human Acute Promyelocytic Leukemia Cell Line via Hyperoxidation of Mitochondrial Specific Reactive Oxygen Species

  • Mun, Yeung-Chul (Department of Hematology and Oncology, Ewha Womans University College of Medicine) ;
  • Ahn, Jee Young (Department of Hematology and Oncology, Ewha Womans University College of Medicine) ;
  • Yoo, Eun Sun (Department of Pediatrics, Ewha Womans University College of Medicine) ;
  • Lee, Kyoung Eun (Department of Hematology and Oncology, Ewha Womans University College of Medicine) ;
  • Nam, Eun Mi (Department of Hematology and Oncology, Ewha Womans University College of Medicine) ;
  • Huh, Jungwon (Department of Laboratory Medicine, Ewha Womans University College of Medicine) ;
  • Woo, Hyun Ae (Graduate School of Pharmaceutical Sciences, Ewha Womans University) ;
  • Rhee, Sue Goo (Yonsei Biomedical Research Institute, Yonsei University College of Medicine) ;
  • Seong, Chu Myong (Department of Hematology and Oncology, Ewha Womans University College of Medicine)
  • Received : 2019.10.15
  • Accepted : 2020.08.25
  • Published : 2020.09.30

Abstract

NB4 cell, the human acute promyelocytic leukemia (APL) cell line, was treated with various concentrations of arsenic trioxide (ATO) to induce apoptosis, measured by staining with 7-amino-actinomycin D (7-AAD) by flow cytometry. 2', 7'-dichlorodihydro-fluorescein-diacetate (DCF-DA) and MitoSOX™ Red mitochondrial superoxide indicator were used to detect intracellular and mitochondrial reactive oxygen species (ROS). The steady-state level of SO2 (Cysteine sulfinic acid, Cys-SO2H) form for peroxiredoxin 3 (PRX3) was measured by a western blot. To evaluate the effect of sulfiredoxin 1 depletion, NB4 cells were transfected with small interfering RNA and analyzed for their influence on ROS, redox enzymes, and apoptosis. The mitochondrial ROS of NB4 cells significantly increased after ATO treatment. NB4 cell apoptosis after ATO treatment increased in a time-dependent manner. Increased SO2 form and dimeric PRX3 were observed as a hyperoxidation reaction in NB4 cells post-ATO treatment, in concordance with mitochondrial ROS accumulation. Sulfiredoxin 1 expression is downregulated by small interfering RNA transfection, which potentiated mitochondrial ROS generation and cell growth arrest in ATO-treated NB4 cells. Our results indicate that ATO-induced ROS generation in APL cell mitochondria is attributable to PRX3 hyperoxidation as well as dimerized PRX3 accumulation, subsequently triggering apoptosis. The downregulation of sulfiredoxin 1 could amplify apoptosis in ATO-treated APL cells.

Keywords

References

  1. Agrawal-Singh, S., Isken, F., Agelopoulos, K., Klein, H.U., Thoennissen, N.H., Koehler, G., Hascher, A., Bäumer, N., Berdel, W.E., Thiede, C., et al. (2012). Genome-wide analysis of histone H3 acetylation patterns in AML identifies PRDX2 as an epigenetically silenced tumor suppressor gene. Blood 119, 2346-2357. https://doi.org/10.1182/blood-2011-06-358705
  2. Bae, S.H., Sung, S.H., Lee, H.E., Kang, H.T., Lee, S.K., Oh, S.Y., Woo, H.A., Kil, I.S., and Rhee, S.G. (2012). Peroxiredoxin III and sulfiredoxin together protect mice from pyrazole-induced oxidative liver injury. Antioxid. Redox Signal. 17, 1351-1361. https://doi.org/10.1089/ars.2011.4334
  3. Chou, W.C., Jie, C., Kenedy, A.A., Jones, R.J., Trush, M.A., and Dang, C.V. (2004). Role of NADPH oxidase in arsenic-induced reactive oxygen species formation and cytotoxicity in myeloid leukemia cells. Proc. Natl. Acad. Sci. U. S. A. 101, 4578-4583. https://doi.org/10.1073/pnas.0306687101
  4. Coe, E. and Schimmer, A.D. (2008). Catalase activity and arsenic sensitivity in acute leukemia. Leuk. Lymphoma 49, 1976-1981. https://doi.org/10.1080/10428190802353617
  5. Cox, A.G., Winterbourn, C.C., and Hampton, M.B. (2010). Mitochondrial peroxiredoxin involvement in antioxidant defence and redox signalling. Biochem. J. 425, 313-325. https://doi.org/10.1042/BJ20091541
  6. de Thé, H. and Chen, Z. (2010). Acute promyelocytic leukaemia: novel insights into the mechanisms of cure. Nat. Rev. Cancer 10, 775-783. https://doi.org/10.1038/nrc2943
  7. George, B., Mathews, V., Poonkuzhali, B., Shaji, R.V., Srivastava, A., and Chandy, M. (2004). Treatment of children with newly diagnosed acute promyelocytic leukemia with arsenic trioxide: a single center experience. Leukemia 18, 1587-1590. https://doi.org/10.1038/sj.leu.2403480
  8. Gewirtz, D.A. (1999). A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochem. Pharmacol. 57, 727-741. https://doi.org/10.1016/S0006-2952(98)00307-4
  9. Ghavamzadeh, A., Alimoghaddam, K., Ghaffari, S.H., Rostami, S., Jahani, M., Hosseini, R., Mossavi, A., Baybordi, E., Khodabadeh, A, Iravani, M., et al. (2006). Treatment of acute promyelocytic leukemia with arsenic trioxide without ATRA and/or chemotherapy. Ann. Oncol. 17, 131-134. https://doi.org/10.1093/annonc/mdj019
  10. Groninger, E., Meeuwsen-De Boer, G.J., De Graaf, S.S., Kamps, W.A., and De Bont, E.S. (2002). Vincristine induced apoptosis in acute lymphoblastic leukaemia cells: a mitochondrial controlled pathway regulated by reactive oxygen species? Int. J. Oncol. 21, 1339-1345.
  11. Hole, P.S., Darley, R.L., and Tonks, A. (2011). Do reactive oxygen species play a role in myeloid leukemias? Blood 117, 5816-5826. https://doi.org/10.1182/blood-2011-01-326025
  12. Hu, J., Liu, Y.F., Wu, C.F., Xu, F., Shen, Z.X., Zhu, Y.M., Li, J.M., Tang, W, Zhao, W.L., Wu, W., et al. (2009). Long-term efficacy and safety of all-trans retinoic acid/arsenic trioxide-based therapy in newly diagnosed acute promyelocytic leukemia. Proc. Natl. Acad. Sci. U. S. A. 106, 3342-3347. https://doi.org/10.1073/pnas.0813280106
  13. Huang, W., Cash, N., Wen, L., Szatmary, P., Mukherjee, R., Armstrong, J., Chvanov, M., Tepikin, A.V., Murphy, M.P., Sutton, R., et al. (2015). Effects of the mitochondria-targeted antioxidant mitoquinone in murine acute pancreatitis. Mediators Inflamm. 2015, 1-13.
  14. Iacobini, M., Menichelli, A., Palumbo, G., Multari, G., Werner, B., and Del Principe, D. (2001). Involvement of oxygen radicals in cytarabine- induced apoptosis in human polymorphonuclear cells. Biochem. Pharmacol. 61, 1033-1040. https://doi.org/10.1016/S0006-2952(01)00548-2
  15. Irwin, M.E., Rivera-Del Valle, N., and Chandra, J. (2013). Redox control of leukemia: from molecular mechanisms to therapeutic opportunities. Antioxid. Redox Signal. 18, 1349-1383. https://doi.org/10.1089/ars.2011.4258
  16. Jing, Y., Dai, J., Chalmers-Redman, R.M., Tatton, W.G., and Waxman, S. (1999). Arsenic trioxide selectively induces acute promyelocytic leukemia cell apoptosis via a hydrogen peroxide-dependent pathway. Blood 94, 2102-2111. https://doi.org/10.1182/blood.V94.6.2102
  17. Kang, S.W., Chae, H.Z., Seo, M.S., Kim, K., Baines, I.C., and Rhee, S.G. (1998). Mammalian peroxiredoxin isoforms can reduce hydrogen peroxide generated in response to growth factors and tumor necrosis $factor-{\alpha}$. J. Biol. Chem. 273, 6297-6302. https://doi.org/10.1074/jbc.273.11.6297
  18. Kang, S.W., Rhee, S.G., Chang, T.S., Jeong, W., and Choi, M.H. (2005). 2-Cys peroxiredoxin function in intracellular signal transduction: therapeutic implications. Trends Mol. Med. 11, 571-578. https://doi.org/10.1016/j.molmed.2005.10.006
  19. Kanno, S., Higurashi, A., Watanabe, Y., Shouji, A., Asou, K., and Ishikawa, M. (2004). Susceptibility to cytosine arabinoside (Ara-C)- induced cytotoxicity in human leukemia cell lines. Toxicol. Lett. 152, 149-158. https://doi.org/10.1016/j.toxlet.2004.04.014
  20. Kearns, P.R., Pieters, R., Rottier, M.M., Pearson, A.D., and Hall, A.G. (2001). Raised blast glutathione levels are associated with an increased risk of relapse in childhood acute lymphocytic leukemia. Blood 97, 393-398. https://doi.org/10.1182/blood.V97.2.393
  21. Lee, S.R., Kim, J.R., Kwon, K.S., Yoon, H.W., Levie, R.L., Ginsburg, A., and Rhee, S.G. (1999). Molecular cloning and characterization of a mitochondrial selenocysteine-containing thioredoxin reductase from rat liver. J. Biol. Chem. 274, 4722-4734. https://doi.org/10.1074/jbc.274.8.4722
  22. Li, N., Ragheb, K., Lawler, G., Sturgis, J., Rajwa, B., Melendez, J.A., and Robinson, J.P. (2003). Mitochondrial complex I inhibitor rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production. J. Biol. Chem. 278, 8516-8525. https://doi.org/10.1074/jbc.M210432200
  23. Liu, S.X., Davidson, M.M., Tang, X., Walker, W.F., Athar, M., Ivanov, V., and Hei, T.K. (2005). Mitochondrial damage mediates genotoxicity of arsenic in mammalian cells. Cancer Res. 65, 3236-3242. https://doi.org/10.1158/0008-5472.CAN-05-0424
  24. Lu, J., Chew, E.H., and Holmgren, A. (2007). Targeting thioredoxin reductase is a basis for cancer therapy by arsenic trioxide. Proc. Natl. Acad. Sci. U. S. A. 104, 12288-12293. https://doi.org/10.1073/pnas.0701549104
  25. Maraldi, T., Prata, C., Fiorentini, D., Zambonin, L., Landi, L., and Hakim, G. (2009). Induction of apoptosis in a human leukemic cell line via reactive oxygen species modulation by antioxidants. Free Radic. Biol. Med. 46, 244-252. https://doi.org/10.1016/j.freeradbiomed.2008.10.027
  26. Mathews, V., George, B., Chendamarai, E., Lakshmi, K.M., Desire, S., Balasubramanian, P., Viswabandya, A., Thirugnanam, R., Abraham, A., Shaji, R.V., et al. (2010). Single-agent arsenic trioxide in the treatment of newly diagnosed acute promyelocytic leukemia: long-term follow-up data. J. Clin. Oncol. 28, 3866-3871. https://doi.org/10.1200/JCO.2010.28.5031
  27. Maung, Z.T., Hogarth, L., Reid, M.M., Proctor, S.J., Hamilton, P.J., and Hall, A.G. (1994). Raised intracellular glutathione levels correlate with in vitro resistance to cytotoxic drugs in leukaemic cells from patients with acute lymphoblastic leukemia. Leukemia 8, 1487-1491.
  28. Mi, J.Q., Li, J.M., Shen, Z.X., Chen, S.J., and Chen, Z. (2012). How to manage acute promyelocytic leukemia. Leukemia 26, 1743-1751. https://doi.org/10.1038/leu.2012.57
  29. Noh, Y.H., Baek, J.Y., Jeong, W., Rhee, S.G., and Chang, T.S. (2009). Sulfiredoxin translocation into mitochondria plays a crucial role in reducing hyperoxidized peroxiredoxin III. J. Biol. Chem. 284, 8470- 8477. https://doi.org/10.1074/jbc.M808981200
  30. Partridge, M.A., Huang, S.X., Hernandez-Rosa, E., Davidson, M.M., and Hei, T.K. (2007). Arsenic induced mitochondrial DNA damage and altered mitochondrial oxidative function: implications for genotoxic mechanisms in mammalian cells. Cancer Res. 67, 5239-5247. https://doi.org/10.1158/0008-5472.CAN-07-0074
  31. Pelicano, H., Feng, L., Zhou, Y., Carew, J.S., Hileman, E.O., Plunkett, W., Keating, M.J., and Huang, P. (2003). Inhibition of mitochondrial respiration: a novel strategy to enhance drug-induced apoptosis in human leukemia cells by a reactive oxygen species-mediated mechanism. J. Biol. Chem. 278, 37832-37839. https://doi.org/10.1074/jbc.M301546200
  32. Potmesil, M., Israel, M., and Silber, R. (1984). Two mechanisms of adriamycin-DNA interaction in L1210 cells. Biochem. Pharmacol. 33, 3137-3142. https://doi.org/10.1016/0006-2952(84)90069-8
  33. Ravandi, F., Estey, E., Jones, D., Faderl, S., O'Brien, S., Fiorentino, J., Pierce, S., Blamble, D., Estrov, Z., Wierda, W., et al. (2009). Effective treatment of acute promyelocytic leukemia with all-trans- retinoic acid, arsenic trioxide, and gemtuzumab ozogamicin. J. Clin. Oncol. 27, 504-510. https://doi.org/10.1200/JCO.2008.18.6130
  34. Rhee, S.G., Kang, S.W., Jeong, W., Chang, T.S., Yang, K.S., and Woo, H.A. (2005). Intracellular messenger function of hydrogen peroxide and its regulation by peroxiredoxins. Curr. Opin. Cell Biol. 17, 183-189. https://doi.org/10.1016/j.ceb.2005.02.004
  35. Rhee, S.G., Woo, H.A., Kil, I.S., and Bae, S.H. (2012). Peroxiredoxin functions as a peroxidase and a regulator and sensor of local peroxides. J. Biol. Chem. 287, 4403-4410. https://doi.org/10.1074/jbc.R111.283432
  36. Sallmyr, A., Fan, J., and Rassool, F.V. (2008). Genomic instability in myeloid malignancies: increased reactive oxygen species (ROS), DNA double strand breaks (DSBs) and error-prone repair. Cancer Lett. 270, 1-9. https://doi.org/10.1016/j.canlet.2008.03.036
  37. Sanz, M.A., Fenaux, P., and Lo Coco, F. (2005). Arsenic trioxide in the treatment of acute promyelocytic leukemia. A review of current evidence. Haematologica 90, 1231-1235.
  38. Soignet, S.L., Frankel, S.R., Douer, D., Tallman, M.S., Kantarjian, H., Calleja, E., Stone, R.M., Kalaycio, M., Scheinberg, D.A., Steinherz, P., et al. (2001). United States multicenter study of arsenic trioxide in relapsed acute promyelocytic leukemia. J. Clin. Oncol. 19, 3852-3860. https://doi.org/10.1200/JCO.2001.19.18.3852
  39. Soignet, S.L., Maslak, P., Wang, Z.G., Jhanwar, S., Calleja, E., Darnashti, L.J., Corso, D., DeBlasio, A., Gabrilove, J., Scheinberg, D.A., et al. (1998). Complete remission after treatment of acute promyelocytic leukemia with arsenic trioxide. N. Engl. J. Med. 339, 1341-1348. https://doi.org/10.1056/NEJM199811053391901
  40. Sumi, D., Shinkai, Y., and Kumagai, Y. (2010). Signal transduction pathways and transcription factors triggered by arsenic trioxide in leukemia cells. Toxicol. Appl. Pharmacol. 244, 385-392. https://doi.org/10.1016/j.taap.2010.02.012
  41. Vivas-Mejía, P.E., Ozpolat, B., Chen, X., and Lopez-Berestein, G. (2009). Downregulation of the c-MYC target gene, peroxiredoxin III, contributes to arsenic trioxide-induced apoptosis in acute promyelocytic leukemia. Int. J. Cancer 125, 264-275. https://doi.org/10.1002/ijc.24341
  42. Wen, S.T. and Van Etten, R.A. (1997). The PAG gene product, a stressinduced protein with antioxidant properties, is an Abl SH3-inding protein and a physiological inhibitor of c-Abl tyrosine kinase activity. Genes Dev. 11, 2456-2467. https://doi.org/10.1101/gad.11.19.2456
  43. Woo, H.A., Jeong, W., Chang, T.S., Park, K.J., Park, S.J., Yang, J.S., and Rhee, S.G. (2005). Reduction of cysteine sulfinic acid by sulfiredoxin is specific to 2-cys peroxiredoxins. J. Biol. Chem. 280, 3125-3128. https://doi.org/10.1074/jbc.C400496200
  44. Zhang, P., Liu, B., Kang, S.W., Seo, M.S., Rhee, S.G., and Obeid, L.M. (1997). Thioredoxin peroxidase is a novel inhibitor of apoptosis with a mechanism distinct from that of Bcl-2. J. Biol. Chem. 272, 30615-30618. https://doi.org/10.1074/jbc.272.49.30615

Cited by

  1. Hyperoxidation of Peroxiredoxins and Effects on Physiology of Drosophila vol.10, pp.4, 2020, https://doi.org/10.3390/antiox10040606