DOI QR코드

DOI QR Code

Coordination chemistry of mitochondrial copper metalloenzymes: exploring implications for copper dyshomeostasis in cell death

  • Daeun Shim (Department of Applied Chemistry, University of Seoul) ;
  • Jiyeon Han (Department of Applied Chemistry, University of Seoul)
  • Received : 2023.09.02
  • Accepted : 2023.10.16
  • Published : 2023.11.30

Abstract

Mitochondria, fundamental cellular organelles that govern energy metabolism, hold a pivotal role in cellular vitality. While consuming dioxygen to produce adenosine triphosphate (ATP), the electron transfer process within mitochondria can engender the formation of reactive oxygen species that exert dual roles in endothelial homeostatic signaling and oxidative stress. In the context of the intricate electron transfer process, several metal ions that include copper, iron, zinc, and manganese serve as crucial cofactors in mitochondrial metalloenzymes to mediate the synthesis of ATP and antioxidant defense. In this mini review, we provide a comprehensive understanding of the coordination chemistry of mitochondrial cuproenzymes. In detail, cytochrome c oxidase (CcO) reduces dioxygen to water coupled with proton pumping to generate an electrochemical gradient, while superoxide dismutase 1 (SOD1) functions in detoxifying superoxide into hydrogen peroxide. With an emphasis on the catalytic reactions of the copper metalloenzymes and insights into their ligand environment, we also outline the metalation process of these enzymes throughout the copper trafficking system. The impairment of copper homeostasis can trigger mitochondrial dysfunction, and potentially lead to the development of copper-related disorders. We describe the current knowledge regarding copper-mediated toxicity mechanisms, thereby shedding light on prospective therapeutic strategies for pathologies intertwined with copper dyshomeostasis.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (RS-2023-00251098).

References

  1. Bell SP and Stillman B (1992) ATP-dependent recognition of eukaryotic origins of DNA replication by a multiprotein complex. Nature 357, 128-134  https://doi.org/10.1038/357128a0
  2. Vander Heiden MG, Cantley LC and Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029-1033  https://doi.org/10.1126/science.1160809
  3. Boyer PD (1998) Energy, life, and ATP. Biosci Rep 18, 97-117  https://doi.org/10.1023/A:1020188311092
  4. Popov LD (2023) Mitochondria as intracellular signalling organelles. An update. Cell Signal 109, 110794 
  5. Martinez-Reyes I, Diebold LP, Kong H et al (2016) TCA cycle and mitochondrial membrane potential are necessary for diverse biological functions. Mol Cell 61, 199-209  https://doi.org/10.1016/j.molcel.2015.12.002
  6. Fantin VR, St-Pierre J and Leder P (2006) Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell 9, 425-434  https://doi.org/10.1016/j.ccr.2006.04.023
  7. Vacanti NM, Divakaruni AS, Green CR et al (2014) Regulation of substrate utilization by the mitochondrial pyruvate carrier. Mol Cell 56, 425-435  https://doi.org/10.1016/j.molcel.2014.09.024
  8. Nolfi-Donegan D, Braganza A and Shiva S (2020) Mitochondrial electron transport chain: oxidative phosphorylation, oxidant production, and methods of measurement. Redox Biol 37, 101674 
  9. Pierrel F, Cobine PA and Winge DR (2007) Metal ion availability in mitochondria. Biometals 20, 675-682  https://doi.org/10.1007/s10534-006-9052-9
  10. Chen X, Chen M, Wolynes PG, Wittung-Stafshede P and Gray HB (2022) Frustration dynamics and electron-transfer reorganization energies in wild-type and mutant azurins. J Am Chem Soc 144, 4178-4185  https://doi.org/10.1021/jacs.1c13454
  11. Bhagi-Damodaran A, Michael MA, Zhu Q et al (2017) Why copper is preferred over iron for oxygen activation and reduction in heme-copper oxidases. Nat Chem 9, 257-263  https://doi.org/10.1038/nchem.2643
  12. Cowley RE, Tian L and Solomon EI (2016) Mechanism of O2 activation and substrate hydroxylation in noncoupled binuclear copper monooxygenases. Proc Natl Acad Sci U S A 113, 12035-12040  https://doi.org/10.1073/pnas.1614807113
  13. Saraste M (1999) Oxidative phosphorylation at the fin de siecle. Science 283, 1488-1493  https://doi.org/10.1126/science.283.5407.1488
  14. Rouslin W (1983) Mitochondrial complexes I, II, III, IV, and V in myocardial ischemia and autolysis. Am J Physiol 244, H743-H748  https://doi.org/10.1152/ajpheart.1983.244.6.H743
  15. Wikstrom M and Sharma V (2018) Proton pumping by cytochrome c oxidase-a 40 year anniversary. Biochim Biophys Acta 1859, 692-698  https://doi.org/10.1016/j.bbabio.2018.03.009
  16. Jett KA and Leary SC (2018) Building the CuA site of cytochrome c oxidase: a complicated, redox-dependent process driven by a surprisingly large complement of accessory proteins. J Biol Chem 293, 4644-4652  https://doi.org/10.1074/jbc.R117.816132
  17. Sakamoto K, Kamiya M, Imai M et al (2011) NMR basis for interprotein electron transfer gating between cytochrome c and cytochrome c oxidase. Proc Natl Acad Sci U S A 108, 12271-12276  https://doi.org/10.1073/pnas.1108320108
  18. Sato W, Hitaoka S, Inoue K et al (2016) Energetic mechanism of cytochrome c-cytochrome c oxidase electron transfer complex formation under turnover conditions revealed by mutational effects and docking simulation. J Biol Chem 291, 15320-15331  https://doi.org/10.1074/jbc.M115.708065
  19. Muresanu L, Pristovsek P, Lohr F et al (2006) The electron transfer complex between cytochrome c552 and the CuA domain of the Thermus thermophilus ba3 oxidase: a combined NMR and computational approach. J Biol Chem 281, 14503-14513  https://doi.org/10.1074/jbc.M601108200
  20. Canonica F, Hennecke H and Glockshuber R (2019) Biochemical pathway for the biosynthesis of the CuA center in bacterial cytochrome c oxidase. FEBS Lett 593, 2977-2989  https://doi.org/10.1002/1873-3468.13587
  21. Yoshikawa S and Shimada A (2015) Reaction mechanism of cytochrome c oxidase. Chem Rev 115, 1936-1989  https://doi.org/10.1021/cr500266a
  22. Sharma V, Jambrina PG, Kaukonen M, Rosta E and Rich PR (2017) Insights into functions of the H channel of cytochrome c oxidase from atomistic molecular dynamics simulations. Proc Natl Acad Sci U S A 114, E10339-E10348  https://doi.org/10.1073/pnas.1708628114
  23. Lin J and Shi DL (2021) Photothermal and photovoltaic properties of transparent thin films of porphyrin compounds for energy applications. Appl Phys Rev 8, 011302 
  24. Hiroto S, Miyake Y and Shinokubo H (2017) Synthesis and functionalization of porphyrins through organometallic methodologies. Chem Rev 117, 2910-3043  https://doi.org/10.1021/acs.chemrev.6b00427
  25. Rottenberg H (2022) The accelerated evolution of human cytochrome c oxidase - selection for reduced rate and proton pumping efficiency? Biochim Biophys Acta Bioenerg 1863, 148595 
  26. Zong S, Wu M, Gu J, Liu T, Guo R and Yang M (2018) Structure of the intact 14-subunit human cytochrome c oxidase. Cell Res 28, 1026-1034  https://doi.org/10.1038/s41422-018-0071-1
  27. Shimada A, Hara F, Shinzawa-Itoh K et al (2021) Critical roles of the CuB site in efficient proton pumping as revealed by crystal structures of mammalian cytochrome c oxidase catalytic intermediates. J Biol Chem 297, 100967 
  28. Bjorck ML, Vilhjalmsdottir J, Hartley AM et al (2019) Proton-transfer pathways in the mitochondrial S. cerevisiae cytochrome c oxidase. Sci Rep 9, 20207 
  29. Stegmaier V, Gorriz RF and Imhof P (2021) Protonation dynamics in the K-channel of cytochrome c oxidase estimated from molecular dynamics simulations. Processes 9, 265 
  30. Popovic DM (2013) Current advances in research of cytochrome c oxidase. Amino Acids 45, 1073-1087  https://doi.org/10.1007/s00726-013-1585-y
  31. Wikstrom M, Krab K and Sharma V (2018) Oxygen activation and energy conservation by cytochrome c oxidase. Chem Rev 118, 2469-2490  https://doi.org/10.1021/acs.chemrev.7b00664
  32. Goyal P, Yang S and Cui Q (2015) Microscopic basis for kinetic gating in cytochrome c oxidase: insights from QM/MM analysis. Chem Sci 6, 826-841  https://doi.org/10.1039/C4SC01674B
  33. Kamiya K, Boero M, Tateno M, Shiraishi K and Oshiyama A (2007) Possible mechanism of proton transfer through peptide groups in the H-pathway of the bovine cytochrome c oxidase. J Am Chem Soc 129, 9663-9673  https://doi.org/10.1021/ja070464y
  34. Hell K (2008) The Erv1-Mia40 disulfide relay system in the intermembrane space of mitochondria. Biochim Biophys Acta 1783, 601-609  https://doi.org/10.1016/j.bbamcr.2007.12.005
  35. Stojanovski D, Bragoszewski P and Chacinska A (2012) The MIA pathway: a tight bond between protein transport and oxidative folding in mitochondria. Biochim Biophys Acta 1823, 1142-1150  https://doi.org/10.1016/j.bbamcr.2012.04.014
  36. Ruiz LM, Libedinsky A and Elorza AA (2021) Role of copper on mitochondrial function and metabolism. Front Mol Biosci 8, 711227 
  37. Banci L, Bertini I, Calderone V et al (2006) A hint for the function of human Sco1 from different structures. Proc Natl Acad Sci U S A 103, 8595-8600  https://doi.org/10.1073/pnas.0601375103
  38. Maung MT, Carlson A, Olea-Flores M et al (2021) The molecular and cellular basis of copper dysregulation and its relationship with human pathologies. FASEB J 35, e21810 
  39. Nyvltova E, Dietz JV, Seravalli J, Khalimonchuk O and Barrientos A (2022) Coordination of metal center biogenesis in human cytochrome c oxidase. Nat Commun 13, 3615 
  40. Banci L, Bertini I, Cefaro C, Ciofi-Baffoni S and Gallo A (2011) Functional role of two interhelical disulfide bonds in human Cox17 protein from a structural perspective. J Biol Chem 286, 34382-34390  https://doi.org/10.1074/jbc.M111.246223
  41. Banci L, Bertini I, Ciofi-Baffoni S, Hadjiloi T, Martinelli M and Palumaa P (2008) Mitochondrial copper(I) transfer from Cox17 to Sco1 is coupled to electron transfer. Proc Natl Acad Sci U S A 105, 6803-6808  https://doi.org/10.1073/pnas.0800019105
  42. McCord JM and Fridovich I (1969) Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem 244, 6049-6055  https://doi.org/10.1016/S0021-9258(18)63504-5
  43. Chiste RC, Freitas M, Mercadante AZ and Fernandes E (2015) Superoxide anion radical: generation and detection in cellular and non-cellular systems. Curr Med Chem 22, 4234-4256  https://doi.org/10.2174/0929867322666151029104311
  44. Dikalov S (2011) Cross talk between mitochondria and NADPH oxidases. Free Radic Biol Med 51, 1289-1301  https://doi.org/10.1016/j.freeradbiomed.2011.06.033
  45. Sadiq IZ (2023) Free radicals and oxidative stress: signaling mechanisms, redox basis for human diseases, and cell cycle regulation. Curr Mol Med 23, 13-35  https://doi.org/10.2174/1566524022666211222161637
  46. Tejero J, Shiva S and Gladwin MT (2019) Sources of vascular nitric oxide and reactive oxygen species and their regulation. Physiol Rev 99, 311-379  https://doi.org/10.1152/physrev.00036.2017
  47. Juan CA, Perez de la Lastra JM, Plou FJ and Perez-Lebena E (2021) The chemistry of reactive oxygen species (ROS) revisited: outlining their role in biological macromolecules (DNA, lipids and proteins) and induced pathologies. Int J Mol Sci 22, 4642 
  48. Collin F (2019) Chemical basis of reactive oxygen species reactivity and involvement in neurodegenerative diseases. Int J Mol Sci 20, 2407 
  49. Sadri S, Tomar N, Yang C, Audi SH, Cowley AW, Jr. and Dash RK (2023) Effects of ROS pathway inhibitors and NADH and FADH2 linked substrates on mitochondrial bioenergetics and ROS emission in the heart and kidney cortex and outer medulla. Arch Biochem Biophys 744, 109690 
  50. Tsang CK, Liu Y, Thomas J, Zhang Y and Zheng XF (2014) Superoxide dismutase 1 acts as a nuclear transcription factor to regulate oxidative stress resistance. Nat Commun 5, 3446 
  51. Tainer JA, Getzoff ED, Beem KM, Richardson JS and Richardson DC (1982) Determination and analysis of the 2 A-structure of copper, zinc superoxide dismutase. J Mol Biol 160, 181-217  https://doi.org/10.1016/0022-2836(82)90174-7
  52. Hayward LJ, Rodriguez JA, Kim JW et al (2002) Decreased metallation and activity in subsets of mutant superoxide dismutases associated with familial amyotrophic lateral sclerosis. J Biol Chem 277, 15923-15931  https://doi.org/10.1074/jbc.M112087200
  53. Ohyama T, Kuroi K, Wakabayashi T, Fujimaki N and Nakabayashi T (2020) Enhancement of oxidative reaction by the intramolecular electron transfer between the coordinated redox-active metal ions in SOD1. J Phys Chem B 124, 2116-2123  https://doi.org/10.1021/acs.jpcb.9b11807
  54. Timucin AC, Cinaroglu SS, Sezerman OU and Timucin E (2021) Bridging the bridging imidazolate in the bimetallic center of the Cu/Zn SOD1 and ALS. Front Chem 9, 716438 
  55. Chemler SR (2015) Copper catalysis in organic synthesis. Beilstein J Org Chem 11, 2252-2253  https://doi.org/10.3762/bjoc.11.244
  56. Lelie HL, Liba A, Bourassa MW et al (2011) Copper and zinc metallation status of copper-zinc superoxide dismutase from amyotrophic lateral sclerosis transgenic mice. J Biol Chem 286, 2795-2806  https://doi.org/10.1074/jbc.M110.186999
  57. Smirnova J, Gavrilova J, Noormagi A et al (2022) Evaluation of Zn2+- and Cu2+-binding affinities of native Cu,Zn-SOD1 and its G93A mutant by LC-ICP MS. Molecules 27, 3160 
  58. Manieri TM, Sensi SL, Squitti R and Cerchiaro G (2021) Structural effects of stabilization and complexation of a zinc-deficient superoxide dismutase. Heliyon 7, e06100 
  59. Fujimaki N, Miura T and Nakabayashi T (2016) The structural analysis of the pro-oxidant copper-binding site of denatured apo-H43R SOD1 and the elucidation of the origin of the acquisition of the pro-oxidant activity. Phys Chem Chem Phys 18, 4468-4475  https://doi.org/10.1039/C5CP07729J
  60. Furukawa Y and O'Halloran TV (2005) Amyotrophic lateral sclerosis mutations have the greatest destabilizing effect on the apo- and reduced form of SOD1, leading to unfolding and oxidative aggregation. J Biol Chem 280, 17266-17274  https://doi.org/10.1074/jbc.M500482200
  61. Casareno RL, Waggoner D and Gitlin JD (1998) The copper chaperone CCS directly interacts with copper/zinc superoxide dismutase. J Biol Chem 273, 23625-23628  https://doi.org/10.1074/jbc.273.37.23625
  62. Fukuoka M, Tokuda E, Nakagome K, Wu Z, Nagano I and Furukawa Y (2017) An essential role of N-terminal domain of copper chaperone in the enzymatic activation of Cu/Zn-superoxide dismutase. J Inorg Biochem 175, 208-216  https://doi.org/10.1016/j.jinorgbio.2017.07.036
  63. Banci L, Barbieri L, Bertini I et al (2013) Atomic-resolution monitoring of protein maturation in live human cells by NMR. Nat Chem Biol 9, 297-299  https://doi.org/10.1038/nchembio.1202
  64. Koo BK, Munroe W, Gralla EB, Valentine JS and Whitelegge JP (2020) A novel SOD1 intermediate oligomer, role of free thiols and disulfide exchange. Front Neurosci 14, 619279 
  65. Zischka H and Einer C (2018) Mitochondrial copper homeostasis and its derailment in Wilson disease. Int J Biochem Cell Biol 102, 71-75  https://doi.org/10.1016/j.biocel.2018.07.001
  66. Garza NM, Swaminathan AB, Maremanda KP, Zulkifli M and Gohil VM (2023) Mitochondrial copper in human genetic disorders. Trends Endocrinol Metab 34, 21-33  https://doi.org/10.1016/j.tem.2022.11.001
  67. Cobine PA, Moore SA and Leary SC (2021) Getting out what you put in: copper in mitochondria and its impacts on human disease. Biochim Biophys Acta Mol Cell Res 1868, 118867 
  68. Boulet A, Vest KE, Maynard MK et al (2018) The mammalian phosphate carrier SLC25A3 is a mitochondrial copper transporter required for cytochrome c oxidase biogenesis. J Biol Chem 293, 1887-1896  https://doi.org/10.1074/jbc.RA117.000265
  69. Valentine JS, Doucette PA and Zittin Potter S (2005) Copper-zinc superoxide dismutase and amyotrophic lateral sclerosis. Annu Rev Biochem 74, 563-593  https://doi.org/10.1146/annurev.biochem.72.121801.161647
  70. Rotunno MS and Bosco DA (2013) An emerging role for misfolded wild-type SOD1 in sporadic ALS pathogenesis. Front Cell Neurosci 7, 253 
  71. Banci L, Bertini I, Durazo A et al (2007) Metal-free superoxide dismutase forms soluble oligomers under physiological conditions: a possible general mechanism for familial ALS. Proc Natl Acad Sci U S A 104, 11263-11267  https://doi.org/10.1073/pnas.0704307104
  72. Bosco DA, Morfini G, Karabacak NM et al (2010) Wildtype and mutant SOD1 share an aberrant conformation and a common pathogenic pathway in ALS. Nat Neurosci 13, 1396-1403  https://doi.org/10.1038/nn.2660
  73. Grad LI, Yerbury JJ, Turner BJ et al (2014) Intercellular propagated misfolding of wild-type Cu/Zn superoxide dismutase occurs via exosome-dependent and -independent mechanisms. Proc Natl Acad Sci U S A 111, 3620-3625  https://doi.org/10.1073/pnas.1312245111
  74. Takahashi A, Nagao C, Murakami K, Kuroi K and Nakabayashi T (2020) Effects of molecular crowding environment on the acquisition of toxic properties of wild-type SOD1. Biochim Biophys Acta Gen Subj 1864, 129401 
  75. Medinas DB, Rozas P, Martinez Traub F et al (2018) Endoplasmic reticulum stress leads to accumulation of wild-type SOD1 aggregates associated with sporadic amyotrophic lateral sclerosis. Proc Natl Acad Sci U S A 115, 8209-8214  https://doi.org/10.1073/pnas.1801109115
  76. Pansarasa O, Bordoni M, Diamanti L, Sproviero D, Gagliardi S and Cereda C (2018) SOD1 in amyotrophic lateral sclerosis: "ambivalent" behavior connected to the disease. Int J Mol Sci 19, 1345 
  77. Wang J, Caruano-Yzermans A, Rodriguez A et al (2007) Disease-associated mutations at copper ligand histidine residues of superoxide dismutase 1 diminish the binding of copper and compromise dimer stability. J Biol Chem 282, 345-352  https://doi.org/10.1074/jbc.M604503200
  78. McAlary L, Aquilina JA and Yerbury JJ (2016) Susceptibility of mutant SOD1 to form a destabilized monomer predicts cellular aggregation and toxicity but not in vitro aggregation propensity. Front Neurosci 10, 499 
  79. Proctor EA, Fee L, Tao Y et al (2016) Nonnative SOD1 trimer is toxic to motor neurons in a model of amyotrophic lateral sclerosis. Proc Natl Acad Sci U S A 113, 614-619  https://doi.org/10.1073/pnas.1516725113
  80. Srinivasan E and Rajasekaran R (2019) Molecular binding response of naringin and naringenin to H46R mutant SOD1 protein in combating protein aggregation using density functional theory and discrete molecular dynamics. Prog Biophys Mol Biol 145, 40-51  https://doi.org/10.1016/j.pbiomolbio.2018.12.003
  81. Ishida S, Andreux P, Poitry-Yamate C, Auwerx J and Hanahan D (2013) Bioavailable copper modulates oxidative phosphorylation and growth of tumors. Proc Natl Acad Sci U S A 110, 19507-19512  https://doi.org/10.1073/pnas.1318431110
  82. Arciello M, Capo CR, D'Annibale S et al (2011) Copper depletion increases the mitochondrial-associated SOD1 in neuronal cells. Biometals 24, 269-278  https://doi.org/10.1007/s10534-010-9392-3
  83. Saporito-Magrina C, Musacco-Sebio R, Acosta JM et al (2017) Copper(II) and iron(III) ions inhibit respiration and increase free radical-mediated phospholipid peroxidation in rat liver mitochondria: effect of antioxidants. J Inorg Biochem 172, 94-99  https://doi.org/10.1016/j.jinorgbio.2017.04.012
  84. Tsuneda T (2020) Fenton reaction mechanism generating no OH radicals in Nafion membrane decomposition. Sci Rep 10, 18144 
  85. Li X, Hao SJ, Han AL et al (2019) Intracellular Fenton reaction based on mitochondria-targeted copper(II)-peptide complex for induced apoptosis. J Mat Chem B 7, 4008--4016  https://doi.org/10.1039/C9TB00569B
  86. Won YS and Seo KI (2020) Sanggenol L promotes apoptotic cell death in melanoma skin cancer cells through activation of caspase cascades and apoptosis-inducing factor. Food Chem Toxicol 138, 111221 
  87. Choi EJ, Ahn WS and Bae SM (2009) Equol induces apoptosis through cytochrome c-mediated caspases cascade in human breast cancer MDA-MB-453 cells. Chem Biol Interact 177, 7-11  https://doi.org/10.1016/j.cbi.2008.09.031
  88. Yazdani M, Hallaj A, Salek F and Baharara J (2022) Potential of the combination of Artemisia absinthium extract and cisplatin in inducing apoptosis cascades through the expression of p53, BAX, caspase 3 ratio, and caspase 9 in lung cancer cells (Calu-6). Eur J Integr Med 56, 102193 
  89. Tsvetkov P, Coy S, Petrova B et al (2022) Copper induces cell death by targeting lipoylated TCA cycle proteins. Science 375, 1254-1261  https://doi.org/10.1126/science.abf0529
  90. Li SR, Bu LL and Cai L (2022) Cuproptosis: lipoylated TCA cycle proteins-mediated novel cell death pathway. Signal Transduct Target Ther 7, 158 
  91. Xie J, Yang Y, Gao Y and He J (2023) Cuproptosis: mechanisms and links with cancers. Mol Cancer 22, 46 
  92. Solomon EI, Sundaram UM and Machonkin TE (1996) Multicopper oxidases and oxygenases. Chem Rev 96, 2563-2606  https://doi.org/10.1021/cr950046o
  93. Bromberg Y, Aptekmann AA, Mahlich Y et al (2022) Quantifying structural relationships of metal-binding sites suggests origins of biological electron transfer. Sci Adv 8, eabj3984 
  94. Polishchuk EV, Merolla A, Lichtmannegger J et al (2019) Activation of autophagy, observed in liver tissues from patients with Wilson disease and from ATP7B-deficient animals, protects hepatocytes from copper-induced apoptosis. Gastroenterology 156, 1173-1189 e1175 
  95. Dziezyc-Jaworska K, Litwin T and Czlonkowska A (2019) Clinical manifestations of Wilson disease in organs other than the liver and brain. Ann Transl Med 7, S62 
  96. Kodama H, Fujisawa C and Bhadhprasit W (2012) Inherited copper transport disorders: biochemical mechanisms, diagnosis, and treatment. Curr Drug Metab 13, 237-250  https://doi.org/10.2174/138920012799320455
  97. Fujisawa C, Kodama H, Sato Y et al (2022) Early clinical signs and treatment of Menkes disease. Mol Genet Metab Rep 31, 100849 
  98. Soma S, Latimer AJ, Chun H et al (2018) Elesclomol restores mitochondrial function in genetic models of copper deficiency. Proc Natl Acad Sci U S A 115, 8161-8166  https://doi.org/10.1073/pnas.1806296115
  99. Zulkifli M, Spelbring AN, Zhang Y et al (2023) FDX1-dependent and independent mechanisms of elesclomol-mediated intracellular copper delivery. Proc Natl Acad Sci U S A 120, e2216722120 
  100. Oliveri V (2022) Selective targeting of cancer cells by copper ionophores: an overview. Front Mol Biosci 9, 841814 
  101. Ge EJ, Bush AI, Casini A et al (2022) Connecting copper and cancer: from transition metal signalling to metalloplasia. Nat Rev Cancer 22, 102-113 https://doi.org/10.1038/s41568-021-00417-2