• Title/Summary/Keyword: maximal submodule

Search Result 13, Processing Time 0.021 seconds

Some Characterizations of Modules via Essentially Small Submodules

  • Le, Van Thuyet;Phan, Hong Tin
    • Kyungpook Mathematical Journal
    • /
    • v.56 no.4
    • /
    • pp.1069-1083
    • /
    • 2016
  • In this paper, the structure of e-local modules and classes of modules via essentially small are investigated. We show that the following conditions are equivalent for a module M: (1) M is e-local; (2) $Rad_e(M)$ is a maximal submodule of M and every proper essential submodule of M is contained in a maximal submodule; (3) M has a unique essential maximal submodule and every proper essential submodule of M is contained in a maximal submodule.

CYCLIC SUBMODULES AND MODULES ASSOCIATED WITH THEM

  • Park, Chin-Hong
    • Journal of applied mathematics & informatics
    • /
    • v.4 no.2
    • /
    • pp.563-571
    • /
    • 1997
  • In this paper we define CR(completely reachable), MICR(minimal cyclic refinement)and MACR(maximal cyclic refinement)-Modules. We have obtained equivalent statements for minimal cyclic submodule and maximal cyclic submodule. Also we have obtained necessary and sufficient conditions for a module M with MICR to be cyclic or strongly cyclic.

Strong-max cyclic submodules

  • Chin-Hong Park
    • Journal of the Korean Mathematical Society
    • /
    • v.35 no.1
    • /
    • pp.1-9
    • /
    • 1998
  • In this paper we define CR(completely reachable), MICR(minimal cyclic refinement) and MACR(maximal cyclic refinement)-Modules. We have obtained equivalent statements for minimal cyclic submodule and maximal cyclic submodule. Also, we have obtained necessary and sufficient conditions for a module M with MICR to be cyclic or strongly cyclic.

  • PDF

MULTIPLICATION MODULES WHOSE ENDOMORPHISM RINGS ARE INTEGRAL DOMAINS

  • Lee, Sang-Cheol
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.5
    • /
    • pp.1053-1066
    • /
    • 2010
  • In this paper, several properties of endomorphism rings of modules are investigated. A multiplication module M over a commutative ring R induces a commutative ring $M^*$ of endomorphisms of M and hence the relation between the prime (maximal) submodules of M and the prime (maximal) ideals of $M^*$ can be found. In particular, two classes of ideals of $M^*$ are discussed in this paper: one is of the form $G_{M^*}\;(M,\;N)\;=\;\{f\;{\in}\;M^*\;|\;f(M)\;{\subseteq}\;N\}$ and the other is of the form $G_{M^*}\;(N,\;0)\;=\;\{f\;{\in}\;M^*\;|\;f(N)\;=\;0\}$ for a submodule N of M.

CONEAT SUBMODULES AND CONEAT-FLAT MODULES

  • Buyukasik, Engin;Durgun, Yilmaz
    • Journal of the Korean Mathematical Society
    • /
    • v.51 no.6
    • /
    • pp.1305-1319
    • /
    • 2014
  • A submodule N of a right R-module M is called coneat if for every simple right R-module S, any homomorphism $N{\rightarrow}S$ can be extended to a homomorphism $M{\rightarrow}S$. M is called coneat-flat if the kernel of any epimorphism $Y{\rightarrow}M{\rightarrow}0$ is coneat in Y. It is proven that (1) coneat submodules of any right R-module are coclosed if and only if R is right K-ring; (2) every right R-module is coneat-flat if and only if R is right V -ring; (3) coneat submodules of right injective modules are exactly the modules which have no maximal submodules if and only if R is right small ring. If R is commutative, then a module M is coneat-flat if and only if $M^+$ is m-injective. Every maximal left ideal of R is finitely generated if and only if every absolutely pure left R-module is m-injective. A commutative ring R is perfect if and only if every coneat-flat module is projective. We also study the rings over which coneat-flat and flat modules coincide.

MaxR(M) AND ZARISKI TOPOLOGY

  • ANSARI-TOROGHY, H.;KEIVANI, S.;OVLYAEE-SARMAZDEH, R.
    • Honam Mathematical Journal
    • /
    • v.28 no.3
    • /
    • pp.365-376
    • /
    • 2006
  • Let R be a commutative ring and let M be an R-module. Let X = $Spec_R(M)$ be the prime spectrum of M with Zariski topology. In this paper, by using the topological properties of X, we will obtain some conditions under which $Max_R(M)=Spec_R(M)$.

  • PDF

OPENLY SEMIPRIMITIVE PROJECTIVE MODULE

  • Bae, Soon-Sook
    • Communications of the Korean Mathematical Society
    • /
    • v.19 no.4
    • /
    • pp.619-637
    • /
    • 2004
  • In this paper, a left module over an associative ring with identity is defined to be openly semiprimitive (strongly semiprimitive, respectively) by the zero intersection of all maximal open fully invariant submodules (all maximal open submodules which are fully invariant, respectively) of it. For any projective module, the openly semiprimitivity of the projective module is an equivalent condition of the semiprimitivity of endomorphism ring of the projective module and the strongly semiprimitivity of the projective module is an equivalent condition of the endomorphism ring of the projective module being a sub direct product of a set of subdivisions of division rings.

MODULES WHOSE CLASSICAL PRIME SUBMODULES ARE INTERSECTIONS OF MAXIMAL SUBMODULES

  • Arabi-Kakavand, Marzieh;Behboodi, Mahmood
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.1
    • /
    • pp.253-266
    • /
    • 2014
  • Commutative rings in which every prime ideal is an intersection of maximal ideals are called Hilbert (or Jacobson) rings. We propose to define classical Hilbert modules by the property that classical prime submodules are intersections of maximal submodules. It is shown that all co-semisimple modules as well as all Artinian modules are classical Hilbert modules. Also, every module over a zero-dimensional ring is classical Hilbert. Results illustrating connections amongst the notions of classical Hilbert module and Hilbert ring are also provided. Rings R over which all modules are classical Hilbert are characterized. Furthermore, we determine the Noetherian rings R for which all finitely generated R-modules are classical Hilbert.

SOME ABELIAN MCCOY RINGS

  • Rasul Mohammadi;Ahmad Moussavi;Masoome Zahiri
    • Journal of the Korean Mathematical Society
    • /
    • v.60 no.6
    • /
    • pp.1233-1254
    • /
    • 2023
  • We introduce two subclasses of abelian McCoy rings, so-called π-CN-rings and π-duo rings, and systematically study their fundamental characteristic properties accomplished with relationships among certain classical sorts of rings such as 2-primal rings, bounded rings etc. It is shown that a ring R is π-CN whenever every nilpotent element of index 2 in R is central. These rings naturally generalize the long-known class of CN-rings, introduced by Drazin [9]. It is proved that π-CN-rings are abelian, McCoy and 2-primal. We also show that, π-duo rings are strongly McCoy and abelian and also they are strongly right AB. If R is π-duo, then R[x] has property (A). If R is π-duo and it is either right weakly continuous or every prime ideal of R is maximal, then R has property (A). A π-duo ring R is left perfect if and only if R contains no infinite set of orthogonal idempotents and every left R-module has a maximal submodule. Our achieved results substantially improve many existing results.