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Abstract. In this paper, the structure of e-local modules and classes of modules via
essentially small are investigated. We show that the following conditions are equivalent
for a module M :

(1) M is e-local;

(2) Rade(M) is a maximal submodule of M and every proper essential submodule of M
is contained in a maximal submodule;

(3) M has a unique essential maximal submodule and every proper essential submodule
of M is contained in a maximal submodule.

1. Introduction

Throughout this paper, R will be an associative ring with identity and all mod-
ules are unitary R-module. We write MR (resp., RM) to indicate that M is a right
(resp., left) R-module. All modules are right unital unless stated otherwise. If N is
a submodule of M , we denote by N ≤ M . Moreover, we write N ≤e M, N ≤⊕ M
and N ≪ M to indicate that N is an essential submodule, a direct summand and
a small submodule of M , respectively. If X is a subset of a right R-module M , the
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right annihilator of X in R is denoted by rR(X) or simply r(X) if no confusion
appears.

Recently, some authors have studied generalizations of semiperfect rings and
perfect rings via projectivity of modules and small submodules of modules see [7,
11, 16, 18, 19]... Following [19], a submodule N ofM is called δ-small inM (denote
N ≪δ M) if M = N +L and M/L singular then L =M . In [7], the author extends
the definition of lifting and supplemented modules to what he calls δ-lifting and δ-
supplemented. This extension is made by replacing in the definitions the concept of
small submodule by the corresponding one of δ-small submodule. Most properties
of lifting and supplemented modules are adapted to this new setting.

A submoduleN ofM is called e-small (essentially small) inM , denoteN ≪e M ,
if M = N +L and L ≤e M then L =M ([20]). In [12], the authors were introduced
a class of all e-lifting modules. A module M is called e-lifting if for any N ≤ M ,
there exists a decomposition M = A ⊕ B such that A ≤ N and N ∩ B ≪e M .
Some homology properties of e-lifting modules class were obtained. It proved that
Rade(M) is a Noetherian (Artinian) module if only if M has ACC(reps. DCC) on
e-small submodules.

In [19], the author denoted

δ(M) = RejM (℘) =
∩

{N ≤M |M/N ∈ ℘} =
∑

{N ≤M |N ≪δ M}

where ℘ is the class of all singular simple modules. Similarly, there is the concept
of modules via e-small submodules ([20]). Call ℘0 the class of all essential maximal
submodules of M .

Rade(M) =
∩

{N ≤M | N ∈ ℘0} =
∑

{N ≤M | N ≪e M}.

Note that Rad(M) ≤ δ(M) ≤ Rade(M). If δ(M) ≪δ M and δ(M) is a max-
imal submodule of M , M is called a δ-local module ([4]). In [15], the author
studied δ-local modules and established some properties of finitely generated am-
ply δ-supplemented modules. A necessary and sufficient condition is provided for
a module to be δ-local module. In this paper, we continue studying class of e-
supplemented modules and introduce the concept of e-local modules. A module M
is called e-local if Rade(M) is a maximal submodule of M and Rade(M) ≪e M .
We show that M = N ⊕K is an e-local module if and only if either N is an e-local
module and K is semisimple, or K is an e-local module and N is semisimple.

Recall that the singular submodule of a module M is the set

Z(M) = {m ∈M | r(m) ≤e R}.

In [6], the author introduced the notions of singular modules and nonsigular mod-
ules. A module M is called singular (resp., nonsingular) if Z(M) = M (resp.,
Z(M) = 0). In [13], the author defined the notion of dual singular submodules,
that is Z(M) =

∩
{Ker g|g :M → N,N is a small module}. M is called cosingular

(resp., noncosingular) module if Z(M) = 0 (resp., Z(M) = M). A generalization



Some Characterizations of Modules via Essentially Small Submodules 1071

of cosingular and noncosingular, which is δ-cosingular and δ-noncosingular (respec-
tively) were introduced and studied in [10].

In [8], the authors introduce the notion of T-noncosingular modules as the
notion of dual K-nonsingular modules and generalizations of noncosingular mod-
ules. It turns out that some results about K-nonsingular modules hold for dual
T-noncosingular modules. The structure of finitely generated T-noncosingular Z-
modules is described, and a necessary and sufficient condition is provided for a
direct sum of T-noncosingular modules to be T-noncosingular. Rings for which
all right modules are T-noncosingular are shown to be precisely right V-rings. A
module M is called T-noncosingular relative to N if, for every nonzero homomor-
phism f : M → N , Im f is not small in N . M is called T-noncosingular if M is
T-noncosingular relative to M . In this paper, we introduce to a special case of T-
noncosingular modules which are T-e-noncosingular modules. A moduleM is called
T-e-noncosingular relative to N if, for every nonzero homomorphism f : M → N ,
Im f is not e-small in N . M is called T-e-noncosingular if M is T-e-noncosingular
relative to M . Some properties of this class of modules and the relation to other
kinds of modules are shown in section 3. We show that every right R-module is
T-e-noncosingular if and only if every right R-module is e-noncosingular, if and
only if for any right R-module M , Rade(M) = 0. Furthermore, T-e-noncosingular
modules and e-lifting modules are dual Baer modules.

2. e-local Modules

Recall that a submodule N of M is said to be e-small in M (denoted by
N ≪e M), if N + L =M with L ≤e M implies L =M .

The following lemma is proved in [20]:

Lemma 2.1. Let M be a module. Then

(1) If N ≪e M and K ≤ N , then K ≪e M and N/K ≪e M/K.

(2) Let N ≪e M and M = X + N. Then M = X ⊕ Y for some a semisimple
submodule Y of M .

(3) Let N,K ≤M . Then N +K ≪e M if and only if N ≪e M and K ≪e M .

(4) If K ≪e M and f : M → N is a homomorphism, then f(K) ≪e N . In
particular, if K ≪e M ≤ N, then K ≪e N .

(5) Let K1 ≤ M1 ≤ M, K2 ≤ M2 ≤ M and M = M1 ⊕M2. Then K1 ⊕ K2 is
e-small in M1 ⊕M2 if and only if K1 ≪e M1 and K2 ≪e M2.

Lemma 2.2. Let M be an R-module and x ∈ M . The following conditions are
equivalent:

(1) x ∈ Rade(M);

(2) xR≪e M .
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Proof. It is clear and omit the proof. 2

Corrolary 2.3. If M =
⊕
i∈I

Mi, then Rade(M) =
⊕
i∈I

Rade(Mi).

Proof. It is clear
⊕
i∈I

Rade(Mi) ≤ Rade(M). For every j ∈ I, call πj :M →Mj the

canonical projection. If x ∈ Rade(M), then xR ≪e M . It follows that πj(xR) ≪e

Mj or πj(x) ∈ Rade(Mj). This gives x ∈
⊕
i∈I

Rade(Mi). 2

Lemma 2.4. Let M be a module. The following are equivalent:

(1) M ≪e M ;

(2) M is a semisimple module;

(3) Any submodule of M is e-small in M .

Proof. (1) ⇒ (2). Let A and B be submodules of M with A ⊕ B ≤e M . As
M = M + (A ⊕ B) and M ≪e M , then M = A ⊕ B. It follows that M is a
semisimple module.

(2) ⇒ (1) and (2) ⇔ (3) are obvious. 2

Recall that a module M is called local if the sum of all proper submodules of
M is also a proper submodule of M . We call M an e-local module if Rade(M) is a
maximal submodule of M and Rade(M) ≪e M .

Let N,L be submodules of M . L is called an e-supplement of N in M if
M = N + L and N ∩ L is e-small in L. A module M is called e-supplemented if
every submodule of M has an e-supplement in M [12].

Lemma 2.5. Any e-local module is e-supplemented.

Proof. Let M be an e-local module and N be a proper submodule of M . Since
Rade(M) is a maximal submodule of M , either N ≤ Rade(M) or Rade(M) +
N = M . If N ≤ Rade(M) then M is an e-supplement of N in M . Now suppose
N +Rade(M) =M . It follows that N ⊕ Y =M for some semisimple submodule Y
of M . Clearly, Y is an e-supplement of N in M . Thus M is e-supplemented. 2

Remark 2.6. The following statements hold

(1) Every simple module is local.

(2) Every semisimple module M is not e-local, since Rade(M) =M .

We next give some characterizations of e-local modules with semisimple prop-
erty. Furthermore, the relationship between of e-local modules and local modules
are considered.

Proposition 2.7. Every local module is either simple or e-local.

Proof. Assume that L is a local module and not simple. It is well-known that
Rad(L) is the unique maximal submodule of L, Rad(L) ≪ L and Rad(L) ≤e L.
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Suppose that Rade(L) ̸= Rad(L). Call x ∈ Rade(L) and x ̸∈ Rad(L). Then
xR ≪e L by Lemma 2.2. Since xR + Rad(L) = L and Rad(L) ≪ L, then we have
xR = L. Hence, L≪e L. By Lemma 2.4, L is semisimple. So, Rad(L) = 0. Let H
be a proper submodule of M . Since Rad(L) is an only maximal submodule of M ,
H ≤ Rad(L). Hence, H = 0. It follows that M is simple, a contradiction. Thus,
Rade(L) ≤ Rad(L). On the other hand, since Rad(L) ≪ L, we have Rad(L) ≤
Rade(L). Thus Rad(L) = Rade(L) is a maximal submodule of L and e-small in L.

2

Proposition 2.8. The following conditions are equivalent for an e-local module M :

(1) M is local;

(2) M is an indecomposable module.

Proof. (1) ⇒ (2) is clear.
(2) ⇒ (1). Note that Rade(M) is a maximal submodule of M . Let L be a

proper submodule of M . Suppose that L ̸≤ Rade(M). Then L + Rade(M) = M .
Since Rade(M) ≪e M , there is a decomposition M = L ⊕ L′ with L′ semisimple.
But M is indecomposable. Thus L = M or L = 0. But L ̸≤ Rade(M) and so
L =M , a contradiction. It follows that L ≤ Rade(M). Consequently, M is a local
module. 2

Theorem 2.9. Let M = N ⊕ K be a module. The following statements are
equivalent:

(1) M is e-local;

(2) Either (a) N is e-local and K is semisimple, or (b) K is e-local and N is
semisimple.

Proof. By Corollary 2.3, we have Rade(M) = Rade(N)⊕ Rade(K).
(1) ⇒ (2). Since Rade(M) is a maximal submodule of M , we have

Rade(N) = N or Rade(K) = K.

Assume that Rade(N) = N . If X is a submodule of K with Rade(K) ≤ X, then
Rade(M) ≤ N ⊕X. So X = Rade(K) or X = K. Therefore Rade(K) is a maximal
submodule of K. Moreover, Rade(K) is e-small in K and N ≪e N . Thus K is
e-local and N is semisimple by Lemma 2.4.

Similarly, if Rade(K) = K, then we also have N is e-local and K is semisimple.
(2) ⇒ (1). Assume that K is e-local and N is semisimple. Then N ≪e N and

Rade(N) = N by Lemma 2.4. So Rade(M) = N ⊕ Rade(K) ≪e M . Let L ≤ M
be a submodule such that Rade(M) ≤ L. It follows that Rade(K) ≤ K ∩ L. As
Rade(K) is a maximal submodule of K, we have K ∩L = Rade(K) or K ∩L = K.
Note thatL = N ⊕ (K ∩ L). This gives that L = Rade(M) or L = M . Therefore
Rade(M) is a maximal submodule of M . Consequently, M is an e-local module.

2
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Corollary 2.10. A direct sum of two e-local modules is never e-local.

Proof. Let M = L1 ⊕ L2 be a module with e-local modules L1 and L2. Suppose
that M is e-local. By Theorem 2.9, one of the Li (i = 1, 2) is semisimple. It follows
that Rade(L1) = L1 or Rade(L2) = L2, a contradiction. 2

Example 2.11.

(1) Let M be a simple singular module. Then M is δ-local but it is not e-local.
For example,M = Z/pZ, p is a prime number. ThenM is a Z-module simple
and singular.

(2) Let N be an e-local projective module and K, a non-projective semisimple
module. By Theorem 2.9 and [15, Proposition 2.17], N ⊕ K is an e-local
module but it is not δ-local.

(3) Let R = Z,M = Z/24Z. Then, Rad(M) = δ(M) = 6M,Rade(M) = 2M . So,
M is an e-local module but it is neither local nor δ-local.

(4) Let F be a field and R =

(
F F
0 F

)
. Then R is δ-local but it is not local

([15, 2.5]). Moreover, R is an e-local module by projectivity of R.

Proposition 2.12. A module M is e-local if and only if M = L ⊕N such that L
is a cyclic e-local module and N is a semisimple module.

Proof. (⇒). Assume that M is an e-local module. Then Rade(M) is a maximal
submodule of M . Call x ∈ M and x ̸∈ Rade(M). By maximality of Rade(M),
then M = Rade(M) + xR. Furthermore, Rade(M) ≪e M , there exists a nonzero
semisimple submoduleX ofM such thatM = X⊕xR. It follows that Rade(X) = X
and so X is not e-local. We deduce that xR is e-local by Theorem 2.9.

(⇐). By Theorem 2.9. 2

Theorem 2.13. The following conditions are equivalent for a module M :

(1) M is an e-local module;

(2) Rade(M) is a maximal submodule of M and every proper essential submodule
of M is contained in a maximal submodule;

(3) M has a unique essential maximal submodule and every proper essential sub-
module of M is contained in a maximal submodule.

Proof. (1) ⇔ (2) is clear.
(1) ⇒ (3). Since M is e-local, M is not semisimple. Assume that there is a

nonzero submodule X ≤ M such that Rade(M) ∩ X = 0. Since Rade(M) is a
maximal submodule of M , M = Rade(M) ⊕ X. This gives that X is a simple
module. As Rade(M) ≪e M , there exists a semisimple submodule L ≤ M such
that M = L ⊕X. We deduce that M is a semisimple module, a contradiction. It
follows that Rade(M) is essential in M . Now suppose that M contains an essential
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maximal submodule N such that N ̸≤ Rade(M). Then M = Rade(M) + N .
Since Rade(M) ≪e M , there exists a semisimple submodule E of M such that
M = E⊕N . ButN is essential inM , we have E = 0 and soN =M , a contradiction.
Consequently, Rade(M) is the only essential maximal submodule of M .

(3) ⇒ (1). Assume that every proper essential submodule M is contained
in a maximal submodule and K is the only essential maximal submodule of M . If
x ∈M \K, thenM = xR+K by maximality ofK. By our assumptionK ≤e M , xR
is not e-small in M . This gives that x ̸∈ Rade(M). We deduce that Rade(M) ≤ K.
Let Y be a proper essential submodule M , then Y ≤ K and Y +K = K ̸= M . It
follows that K ≪e M , i.e. K ≤ Rade(M). Thus Rade(M) = K ≪e M . 2

Following [12], a module M is called e-supplemented if every submodule of M
has an e-supplement in M . A module M is called amply e-supplemented if for any
submodules A,B of M with M = A+B, there exists an e-supplement P of A such
that P ≤ B. In this case, we say that A has ample e-supplements in M .

Proposition 2.14. Let M be an e-local module. If N is a submodule of M , then
N is either e-small in M or there exists a semisimple submodule X of M such that
M = N ⊕X.

Proof. Let N be a submodule of M . Assume N is not e-small in M . Then
N ̸≤ Rade(M). By maximality of Rade(M), we have N + Rade(M) = M . As
Rade(M) ≪e M , M = N ⊕X for some a semisimple submodule X of M . 2

Lemma 2.15. Let N be a maximal submodule of a module M . If K is an e-
supplement of N in M , then K is either e-local or semisimple.

Proof. By assumption, we have N +K =M and N ∩K ≪e K. Therefore N ∩K ≤
Rade(K). As M/N ≃ K/(N ∩ K), N ∩ K is a maximal submodule of K. It
follows that Rade(K) = N ∩ K or Rade(K) = K. If Rade(K) = N ∩ K, then
K is an e-local module. Assume that Rade(K) = K. For any x ∈ K \ (N ∩ K),
we have xR + (N ∩K) = K. Furthermore, we have xR ≪e K by Lemma 2.2 and
N ∩K ≪e K. Thus K ≪e K by Lemma 2.1. By Lemma 2.4, K is a semisimple
module. 2

Lemma 2.16. Let L1, L2, .., Ln be submodules of M such that either Li is e-local
or Li is semisimple. Assume that N is a submodule of M and N + L1 + ... + Ln
has an e-supplement K in M. Then, there exists a subset I of {1, ..., n} such that
K +

∑
i∈I

Xi is an e-supplement of N in M, where Xi = Li or Xi is a semisimple

direct summand of Li.

Proof. If n = 1 then N + (K + L1) = M and K ∩ (N + L1) ≪e K. Call H =
(N +K) ∩ L1. Assume that H ≪e L1. We have

N ∩ (K + L1) ≤ [(N + L1) ∩K] + [(N +K) ∩ L1 ≪e K + L1].

It follows that K + L1 is an e-supplement of N in M .
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If H ̸≪e L1 then L1 is not semisimple by Lemma 2.4. By hypothesis, L1 is
e-local. From Proposition 2.14, there exists a semisimple submodule X1 ≤ L1 such
that H ⊕X1 = L1. Hence N + (K +X1) =M . We have that

N ∩ (K +X1) ≤ (N +K) ∩X1 + (N +X1) ∩K,

(N +K) ∩X1 ≪e X1, (N +X1) ∩K ≤ (N + L1) ∩K ≪e K

and obtain that N∩(K+X1) ≪e K+X1. This gives thatK+X1 is an e-supplement
of N in M .

Assume that n > 1. By induction on n, there exist a subset J of {2, ..., n} and
Xj ≤ Lj , j ∈ J such that K +

∑
j∈J

Xj is an e-supplement of N + L1 in M , which

either Xj = Lj or Xj is a semisimple direct summand of Lj for all j ∈ J. Then,
there exists a submodule X1 of L1 such that K +

∑
j∈J

Xj +X1 is an e-supplement

of N in M and either X1 = L1 or X1 is a semisimple direct summand of L1. 2

Proposition 2.17. Let M be a finitely generated module. The following conditions
are equivalent:

(1) M is an amply e-supplemented module;

(2) Every maximal submodue of M has ample e-supplement in M ;

(3) If L,N are submodules of M and M = L + N then M = N + L1 + ... + Ln,
where n is positive integer number, either Li is e-local or Li is semisimple.

Proof. (1) ⇒ (2). It is clear.
(2) ⇒ (3). Let N,L be submodules of M and M = N + L. Call Γ a class of

all submodules X of M such that X ≤ L and X = X1 + ... + Xk, where either
Xi is e-local or Xi is semisimple. Assume that M ̸= N + A for all A ∈ Γ. By
[15, Lemma 3.5], there exists a submodule U ≤ M such that N ≤ U and U is a
maximal submodule of M satisfying M ̸= U + A for all A ∈ Γ. Since M is finitely
generated and U ̸=M , there exists a maximal submoduleK ≤M such that U ≤ K.
So K + L = M . By hypothesis, there exists a submodule E ≤ L such that E is
an e-supplement of K in M . Following Lemma 2.15, either E is e-local or E is
semisimple. It is easy to see that U ̸= U +E. Otherwise, we have E ≤ U ≤ K and
K = K+E =M . It followsM = U+E+F , F ∈ Γ. So E+F ∈ Γ, a contradiction.

(3) ⇒ (1). By Lemma 2.16. 2

Lemma 2.18. Let N,L be submodules of M such that M = N + L. If L is an
e-supplemented module then L contains an e-supplement of N in M.

Proof. By hypothesis, there exists a submodule K of L such that (N ∩L) +K = L
and (N ∩ L) ∩ K ≪e K. Then N + K = M and N ∩ K ≪e K. So K is an
e-supplement of N in M . 2

Proposition 2.19. Let M be a module. If every cyclic submodule of M is e-
supplemented then every maximal submodule of M has ample e-supplement.
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Proof. Assume that N is a maximal submodule of M . Let L be a submodule of
M such that M = N + L. There exists x in L satifying x ̸∈ N and xR +N = M .
Following Lemma 2.18, xR containt an e-supplement of N in M . 2

Corollary 2.20. If M is a finitely generated module and every cyclic submodule of
M is e-supplemented then M is an e-supplemented module.

Proof. By Proposition 2.17 and Proposition 2.19. 2

3. T-e-noncosingular Modules

Let M,N be right R-modules. We call M T-e-noncosingular relative to N if
Im f is not e-small in N for any nonzero homomorphism f :M → N . M is called T-
e-noncosingular if M is T-e-noncosingular relative to M . The ring R is called right
(left) T-e-noncosingular if the right (left) module RR (RR) is T-e-noncosingular,
respectively.

We denote
∇e[M,N ] = {f :M → N | Im f ≪e N}.

It is easily to check that M is T-e-noncosingular relative to N if and only if
∇e[M,N ] = 0.

Proposition 3.1. Let M,N be right R-modules and K is a direct summand of M .
If ∇e[M,N ] = 0 then ∇e[K,N ] = 0.

Proof. Assume that M = K⊕L and φ ∈ ∇e[K,N ]. Then Imφ≪e N . We consider
the homomorphism φ ⊕ 0L : M → N defined by (φ ⊕ 0L)(k + l) = φ(k) for all
k ∈ K, l ∈ L. So Im(φ ⊕ 0L) = Imφ ≪e N . As ∇e[M,N ] = 0, φ ⊕ 0K = 0 and
hence φ = 0. 2

Proposition 3.2. Let M,N be right R-modules. If ∇e[M,N ] = 0 then ∇e[M,P ] =
0 for all submodule P of N .

Proof. Assume that P ≤ N and φ ∈ ∇e[M,P ]. Then Imφ ≪e P . It follows that
Imφ≪e N . Since ∇e[M,N ] = 0, φ = 0. 2

Corollary 3.3. Every direct summand of a T-e-noncosingular module is also a
T-e-noncosingular module.

Proof. It is followed from Proposition 3.1. 2

Proposition 3.4. Let M = ⊕i∈IMi, N = ⊕j∈JNj be right R-modules, where
I, J are non-empty sets. Then ∇e[M,N ] = 0 if only if ∇e[Mi, Nj ] = 0 for all
i ∈ I, j ∈ J .

Proof. Assume that ∇e[Mi, Nj ] = 0 for all i ∈ I, j ∈ J . Let f ∈ ∇e[M,Nj ] and
the conlusion ιi : Mi → M . Since Im f ≪e Nj , Im fιi ≪e Nj for all i ∈ I. Hence
fιi = 0 for all i ∈ I. It follows that f = 0. Now, let φ ∈ ∇e[M,N ] and the
projection πj : N → Nj . Set φj = πjφ :M → Nj . Since Imφ≪e N , Imφj ≪e Nj
for all i ∈ I. By hypothesis, φj = 0. It follows that φ = 0.
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The converse is followed by Lemma 3.1 and Lemma 3.2. 2

Corollary 3.5. Let M = ⊕i∈IMi, N = ⊕j∈JNj be right R-modules, where I, J
are non-empty sets. Then M is T-e-noncosingular relative to N if only if Mi is
T-e-noncosingular relative to Nj for all i ∈ I, j ∈ J .

Corrllary 3.6. Let (Mi)i∈I be a family of modules. Then M = ⊕i∈IMi is a T-e-
noncosingular if and only if Mi is T-e-noncosingular relative to Mj for all i, j ∈ I.

Let M be a module. We call M an e-small module if M is e-small in injective
envelope of M . We denote

Ze(M) =
∩

{Ker g|g :M → N,N is e-small module}.

If Ze(M) =M , then M is called an e-noncosingular module.

Proposition 3.7. The following conditions are equivalent for a ring R:

(1) Every right R-module is T-e-noncosingular;

(2) Every right R-module is e-noncosingular;

(3) For any right R-module M, Rade(M) = 0.

Proof. (1) ⇒ (2). Let N ≪e E(N). We will prove N = 0. We consider the
homomorphism f : M ⊕N → E(N) given by f(m+ n) = n for all m ∈ M,n ∈ N .
Then Im f = N ≪e E(N). We have that M ⊕N ⊕ E(N) is an T-e-noncosingular
module and obtain that M ⊕N is T-e-noncosingular relative to E(N). This gives
f = 0. It is easily to check that N = 0. Furthermore, for any R-module M ,
Ze(M) =

∩
{Ker g|g :M → 0} =M , i.e., M is e-noncosingular.

(2) ⇒ (3). Assume that N is an e-small submodule of M . Call π :M ⊕N → N
the projection. By hypothesis, M ⊕ N is e-noncosingular. We have that Ze(M ⊕
N) =M ⊕N and obtain that f = 0. Thus N = 0.

(3) ⇒ (1). It is clear. 2

Now, we denote:

Ze−M (N) =
∩

φ∈∇e[M,N ]

Kerφ

Proposition 3.8. Let M be a module. Then the following conditions hold:

(1) Ze(M) ≤ Ze−M (N).

(2) Ze−M (N) is a fully invariant submodule of M .

(3) ∇e[M,N ] = 0 if only if M = Ze−M (N).

(4) If M = ⊕i∈IMi then Ze−M (N) ≤ ⊕i∈IZe−Mi(N).
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Proof. (1) By definition, we get

Ze(M) ≤
∩

{Ker g :M → N |N = Im f, f ∈ ∇e[M,N ]} = Ze−M (N).

(2) Assume f ∈ End(M) and φ ∈ Hom(M,N) such that Imφ≪e N . Therefore
Imφf ≤ Imφ. So Imφf ≪e N . For all x ∈ Ze−M (N), φ(x) = 0 implies φf(x) = 0.
Thus f(x) ∈ Ze−M (N), i.e., Ze−M (N) is fully invariant.

(3) It is clear.

(4) As Ze−M (N) is fully invariant, Ze−M (N) = ⊕i∈I(Ze−M (N) ∩Mi). We will
prove that Ze−M (N)∩Mi ⊂ Ze−Mi(N). Let xi ∈ Ze−M (N)∩Mi and φi :Mi → N
such that Imφi ≪e N . Then ψi : M → M extends φi (ψi|Mj

= 0 for all j ̸= i).
This gives Imψi ≪e N . Thus ψi(xi) = φi(xi) = 0 and hence xi ∈ Ze−Mi(N). 2

Corollary 3.9. Let M and N be modules. Then M is T-e-noncosingular relative
to N if and only if Ze−M (N) =M . 2

Remark 3.10. It is clearly to see that Ze−M (M) ≤ ZT(M) =
∩
{Kerφ|φ ∈

End(M), Imφ≪M}. So, if M is a T-e-noncosingular then M is a T-noncosingular
module. The converse is not true in general.

Example 3.11.

(1) Z-module Z is T-e-noncosingular.

(2) If MZ = Z6 then Rad(M) = 0 and Ze−M (M) = 0. It follows that M is
T-noncosingular but not T-e-noncosingular.

(3) Let R be a proper Dedekind domain and P be a nonzero prime ideal of R.
Consider module M = R(P∞) ⊕ R/P . Then M is not a T-noncosingular
module (see Example 2.12, [9]). So M is not a T-e-noncosingular module.

(4) As HomZ(Q,Z2) = HomZ(Z2,Q) = 0, QZ is T-e-noncosingular relative to
Z2 and Z2 is T-e-noncosingular relative to Q. Hence (Q ⊕ Z2)Z is T-e-
noncosingular by Lemma 3.6.

Proposition 3.12. Let M be an R-module which S = End(M) is Von Neumann
regular and T (M) = {N ≤ M |Rade(N) = N}. If T (M) = 0 then M is T-e-
noncosingular.

Proof. Let f ∈ End(M) such that Im f ≪e M . Then Im f ≤ Rade(M).
Since S is regular, there exists g ∈ S such that f = fgf . Hence fg is
an idempotent and M = Im fg ⊕ Ker fg. Since Im fg ≤ Im f ≤ Rade(M),
Rade(M) = Rade(Im fg) ⊕ Rade(Ker fg). So, Im fg ∩ Rade(M) = Im fg =
Rade(Im fg) ⊕ (Im fg ∩ Rade(Ker fg)). It follows Im fg = Rade(Im fg). There-
fore Im fg ∈ T (M). We have fg = 0 and f = 0. 2
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Note that if Rade(M) = 0 then M is a T-e-noncosingular module. But the
converse is not true in general. For example, let Z-module M = Q⊕Z2 in Example
3.11. Then M is T-e-noncosingular. However, we have

Rade(Q⊕ Z2) = Rade(Q)⊕ Rade(Z2) = 0⊕ Z2 ̸= 0.

Proposition 3.13. Let M = xR be a cyclic module such that r(x) is an ideal of
R. Then M is T-e-noncosingular if and only if Rade(M) = 0.

Proof. Assume that M is T-e-noncosingular and Rade(M) ̸= 0. There exists a ∈ R
such that xa ̸= 0 and xa ∈ Rade(M). Call f an endomorphism of M with f(xr) =
xar for all r ∈ R. We have Im f ≤ Rade(M) and f ̸= 0. But Rade(M) ≪e M , a
contradiction. The converse is clear. 2

Corollary 3.14. A ring R is right T-e-noncosingular if and only if Rade(RR) = 0.

Example 3.15.

(1) Consider Z6 as a ring. We have J(Z6) = 0, Rade(Z6) = Z6. So Z6 is T-
noncosingular but is not T-e-noncosingular.

(2) Let R be a discrete valuation ring with maximal ideal m. Then R is not
T-noncosingular following Example 4.7,[14]. So R is not T-e-noncosingular.

For N ≤M, I ≤ S = End(M), denote N �M means that N is a fully invariant
submodule of M and EM (I) =

∑
ϕ∈I

Imϕ; DS(N) = {ϕ | Imϕ ≤ N}.

Lemma 3.16. Let N ≤M, I ≤ S, P �M,L� S. Then:

(1) EM (DS(EM (I))) = EM (I);

(2) DS(EM (DS(N))) = DS(N);

(3) EM (L)�M ;

(4) DS(P )� S.

Proof. (1) EM (DS(EM (I))) =
∑

ϕ∈DS(EM (I))

Imϕ ≤ EM (I). Conversely, for all

φ ∈ I, Imφ ≤ EI(M). So φ ∈ DS(EM (I)) = {ϕ| Imϕ ≤ EM (I)}.
(2) EM (DS(N)) ≤ N implies DS(EM (DS(N))) ≤ DS(N). Conversely, for all

φ, Imφ ≤ N, Imφ ≤
∑

Imϕ≤N
Imϕ = EM (DS(N)). So DS(N) ≤ DS(EM (DS(N))).

(3) Let f :M →M , f(EM (L)) =
∑
ϕ∈L

f(Imϕ) =
∑
ϕ∈L

Imϕf . Since L�S, ϕf ∈ L.

So
∑
ϕ∈L

Imϕf ≤
∑
ψ∈L

Imψ = EM (L).

(4) For all ψ ∈ S, ϕ ∈ DS(P ). We have ψϕ(M) ≤ ψ(P ) ≤ P and ϕψ(M) ≤
ϕ(M) ≤ P . So ψϕ ∈ DS(P ) and ϕψ ∈ DS(P ). 2
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Proposition 3.17. Let M be an R-module. M is T-e-noncosingular if and only if
for all I ≤ S,EM (I) = eM⊕L, in which L≪e M, e2 = e ∈ S implies I∩(1−e)S =
0.

Proof. (⇒). Assume I ≤ S,EM (I) = eM ⊕ L, in which L ≪e M, e2 = e ∈ S. We
have EM (I∩(1−e)S) ≤ EM (I)∩EM (1−e)S ≤ EM (I)∩(1−e)M = (eM⊕L)∩(1−
e)M ≤ (1− e)L. Since L≪e M , (1− e)L≪e M . Hence EM (I ∩ (1− e)S) ≪e M .
M is T-e-noncosingular, so I ∩ (1− e)S = 0.

(⇐). Let ϕ ∈ S, Imϕ ≪e M . We have EM (ϕS) =
∑
ψ∈S

Imϕψ = ϕ(
∑
ψ∈S

Imψ) =

ϕ(M) ≪e M . By hypothesis, I ∩ S = 0. Hence I = 0, i.e., ϕ = 0. 2

Corollary 3.18. M is a T-e-noncosingular module if and only if for all I ≤
S,EM (I) ≪e M implies that I = 0.

Now, we callM an e-K- module if for all N ≤M , DS(N) = 0 implies N ≪e M .

Proposition 3.19. M is an e-K-module if and only if, for all N ≤M,EM (DS(N))
is a direct summand of M implies that N = EM (DS(N))⊕ L with L≪e M .

Proof. Assume that N ≤ M and EM (DS(N)) ≤⊕ M . Then EM (DS(N)) =
eM, e2 = e ∈ S. Clearly, eM = EM (DS(N)) ≤ N . On the other hand, DS(eM) ∩
DS((1 − e)M ∩ N) = 0 and DS((1 − e)M ∩ N) ≤ DS(N) = DS(eM). Hence
DS((1− e)M ∩N) = 0. Since M is an e-K-module, we have (1− e)M ∩N ≪e M .
Thus N = EM (DS(N))⊕ ((1− e)M ∩N) and (1− e)M ∩N ≪e M .

Conversely, assume N ≤ M and DS(N) = 0. Then EM (DS(N)) = 0. By
hypothesis, N = EM (DS(N))⊕ L with L≪e M . Thus N = L≪e M . 2

Recalled that a module M is e-lifting if for all submodule N of M , there exists
decompsiton M = A ⊕ B such that A ≤ N and N ∩ B ≪e B ([12]). A module M
is called dual Baer if for all N ≤ M , there exists an idempotent e ∈ S = End(M)
such that DS(N) = eS([8]).

Lemma 3.20. A dual Baer e-K-module is e-lifting.

Proof. Assume M is a dual Baer and e-K-module. Let N be a submodule of M .
There exists an idempotent e ∈ S = End(M) such that DS(N) = eS. We have
eM = EM (eS) ≤ N . HenceN = eM⊕((1−e)M∩N). For all ϕ ∈ DS((1−e)M∩N),
Imϕ ≤ N . It follows ϕ ∈ DS(N) = eS. Since ϕ(M) ≤ (1 − e)M ∩ eM = 0, then
ϕ = 0, i.e., DS((1−e)M ∩N) = 0. SinceM is an e-K-module, (1−e)M ∩N ≪e M .
Thus M is e-lifting. 2

Theorem 3.21. A T-e-noncosingular e-lifting module is dual Baer.

Proof. Assume that M is a T-e-noncosingular e-lifting module and N ≤ M . Then
N = eM ⊕B which e2 = E ∈ S,B = (1− e)M ∩N ≪e M . Hence eS ≤ DS(eM) ≤
DS(N). If there exists ϕ ∈ DS(N)\eS, then (1−e)ϕ = eS∩DS(N). We obtain that
(1−e)ϕM ≤ N and (1−e)ϕM ≤ (1−e)M . So (1−e)ϕM ≤ N∩(1−e)M = B ≪e M .
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Since M is T-e-noncosingular, which follows (1− e)ϕ = 0, i.e., ϕ = eϕ ∈ eS. This is
a contradition. Thus DS(N) = eS, i.e., M is dual Baer. 2

Lemma 3.22. Let M be a T-e-noncosingular module and X, a fully invariant
submodule of M and X = N ⊕ B with B ≪e M . If N is a direct summand of M
then N is a fully invariant submodule of M .

Proof. Assume M = N ⊕ P and ϕ ∈ End(M). Set ψ = πPϕ|NπN . If there exists
x ∈ N such that ϕ(x) ̸∈ N , then ψ(x) ̸= 0. Since X is a fully invariant submodule
of M , ϕ(N) ≤ ϕ(X) ≤ X. So

ϕ(M) = πPϕ|NπN (M) = πPϕ|N (N) ≤ πP (X) = X ∩ P.

Then X ∩ P ∼= B. It follows X ∩ P ≪e M . As M is T-e-noncosingular, ψ = 0, a
contradiction. Thus ϕ(N) ≤ N . 2

Proposition 3.23. Let M be a T-e-noncosingular module. The following conditions
are equivalent:

(1) For every fully invariant submodule N of M , there exists a direct summand B
of M such that N/B ≪e M/B;

(2) For every fully invariant submodule N of M , there exists a fully invariant
direct summand B of M such that N/B ≪e M/B.

Proof. (2) ⇒ (1) is clear. It suffices to prove (1) ⇒ (2). Assume X �M . By (1),
we have X = N ⊕B, B ≪e M and N is a direct summand of M . By Lemma 3.22,
N is a fully invariant submodule of M . Thus (2) holds. 2
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