KYUNGPOOK Math. J. 56(2016), 1069-1083 http://dx.doi.org/10.5666/KMJ.2016.56.4.1069 pISSN 1225-6951 eISSN 0454-8124 © Kyungpook Mathematical Journal

Some Characterizations of Modules via Essentially Small Submodules

Le Van Thuyet

Department of Mathematics, Hue University, 3 Le Loi, Hue city, Vietnam e-mail: lvthuyet@hueuni.edu.vn

PHAN HONG TIN* Department of Mathematics, Hue University's College of Education, 32 Le Loi, Hue city, Vietnam e-mail: phtin@hueic.edu.vn

ABSTRACT. In this paper, the structure of e-local modules and classes of modules via essentially small are investigated. We show that the following conditions are equivalent for a module M:

- (1) M is e-local;
- (2) $\operatorname{Rad}_{e}(M)$ is a maximal submodule of M and every proper essential submodule of M is contained in a maximal submodule;
- (3) M has a unique essential maximal submodule and every proper essential submodule of M is contained in a maximal submodule.

1. Introduction

Throughout this paper, R will be an associative ring with identity and all modules are unitary R-module. We write M_R (resp., $_RM$) to indicate that M is a right (resp., left) R-module. All modules are right unital unless stated otherwise. If N is a submodule of M, we denote by $N \leq M$. Moreover, we write $N \leq^e M$, $N \leq^{\oplus} M$ and $N \ll M$ to indicate that N is an essential submodule, a direct summand and a small submodule of M, respectively. If X is a subset of a right R-module M, the

^{*} Corresponding Author.

Received March 12, 2015; accepted May 11, 2016.

²⁰¹⁰ Mathematics Subject Classification: 16D10, 16D40, 16D60, 16D70.

Key words and phrases: e-local module; e-noncosingular module; T-e-noncosingular module.

This work was supported by National Foundation for Science and Technology Development of Vietnam and Vietnam Institute for Advanced Study in Mathematics.

right annihilator of X in R is denoted by $r_R(X)$ or simply r(X) if no confusion appears.

Recently, some authors have studied generalizations of semiperfect rings and perfect rings via projectivity of modules and small submodules of modules see [7, 11, 16, 18, 19]... Following [19], a submodule N of M is called δ -small in M (denote $N \ll_{\delta} M$) if M = N + L and M/L singular then L = M. In [7], the author extends the definition of lifting and supplemented modules to what he calls δ -lifting and δ -supplemented. This extension is made by replacing in the definitions the concept of small submodule by the corresponding one of δ -small submodule. Most properties of lifting and supplemented modules are adapted to this new setting.

A submodule N of M is called e-small (essentially small) in M, denote $N \ll_e M$, if M = N + L and $L \leq^e M$ then L = M ([20]). In [12], the authors were introduced a class of all e-lifting modules. A module M is called e-lifting if for any $N \leq M$, there exists a decomposition $M = A \oplus B$ such that $A \leq N$ and $N \cap B \ll_e M$. Some homology properties of e-lifting modules class were obtained. It proved that $\operatorname{Rad}_e(M)$ is a Noetherian (Artinian) module if only if M has ACC(reps. DCC) on e-small submodules.

In [19], the author denoted

$$\delta(M) = \operatorname{Rej}_M(\wp) = \bigcap \{ N \le M | M/N \in \wp \} = \sum \{ N \le M | N \ll_{\delta} M \}$$

where \wp is the class of all singular simple modules. Similarly, there is the concept of modules via *e*-small submodules ([20]). Call \wp_0 the class of all essential maximal submodules of M.

$$\operatorname{Rad}_{e}(M) = \bigcap \{ N \le M \mid N \in \wp_{0} \} = \sum \{ N \le M \mid N \ll_{e} M \}.$$

Note that $Rad(M) \leq \delta(M) \leq \operatorname{Rad}_e(M)$. If $\delta(M) \ll_{\delta} M$ and $\delta(M)$ is a maximal submodule of M, M is called a δ -local module ([4]). In [15], the author studied δ -local modules and established some properties of finitely generated amply δ -supplemented modules. A necessary and sufficient condition is provided for a module to be δ -local module. In this paper, we continue studying class of e-supplemented modules and introduce the concept of e-local modules. A module M is called e-local if $\operatorname{Rad}_e(M)$ is a maximal submodule of M and $\operatorname{Rad}_e(M) \ll_e M$. We show that $M = N \oplus K$ is an e-local module if and only if either N is an e-local module and K is semisimple, or K is an e-local module and N is semisimple.

Recall that the singular submodule of a module M is the set

$$Z(M) = \{ m \in M \mid r(m) \leq^{e} R \}.$$

In [6], the author introduced the notions of singular modules and nonsigular modules. A module M is called singular (resp., nonsingular) if Z(M) = M (resp., Z(M) = 0). In [13], the author defined the notion of dual singular submodules, that is $\overline{Z}(M) = \bigcap \{ \text{Ker } g | g : M \to N, N \text{ is a small module} \}$. M is called cosingular (resp., noncosingular) module if $\overline{Z}(M) = 0$ (resp., $\overline{Z}(M) = M$). A generalization

of cosingular and noncosingular, which is δ -cosingular and δ -noncosingular (respectively) were introduced and studied in [10].

In [8], the authors introduce the notion of T-noncosingular modules as the notion of dual X-nonsingular modules and generalizations of noncosingular modules. It turns out that some results about \mathcal{K} -nonsingular modules hold for dual T-noncosingular modules. The structure of finitely generated T-noncosingular \mathbb{Z} modules is described, and a necessary and sufficient condition is provided for a direct sum of T-noncosingular modules to be T-noncosingular. Rings for which all right modules are \mathcal{T} -noncosingular are shown to be precisely right V-rings. A module M is called \mathcal{T} -noncosingular relative to N if, for every nonzero homomorphism $f: M \to N$, Im f is not small in N. M is called T-noncosingular if M is T-noncosingular relative to M. In this paper, we introduce to a special case of Tnoncosingular modules which are \mathcal{T} -*e*-noncosingular modules. A module *M* is called \mathcal{T} -e-noncosingular relative to N if, for every nonzero homomorphism $f: M \to N$, Im f is not e-small in N. M is called \mathcal{T} -e-noncosingular if M is \mathcal{T} -e-noncosingular relative to M. Some properties of this class of modules and the relation to other kinds of modules are shown in section 3. We show that every right R-module is \mathcal{T} -e-noncosingular if and only if every right *R*-module is e-noncosingular, if and only if for any right R-module M, $\operatorname{Rad}_{e}(M) = 0$. Furthermore, \mathcal{T} -e-noncosingular modules and *e*-lifting modules are dual Baer modules.

2. e-local Modules

Recall that a submodule N of M is said to be e-small in M (denoted by $N \ll_e M$), if N + L = M with $L \leq^e M$ implies L = M. The following lemma is proved in [20]:

Lemma 2.1. Let M be a module. Then

- (1) If $N \ll_e M$ and $K \leq N$, then $K \ll_e M$ and $N/K \ll_e M/K$.
- (2) Let $N \ll_e M$ and M = X + N. Then $M = X \oplus Y$ for some a semisimple submodule Y of M.
- (3) Let $N, K \leq M$. Then $N + K \ll_e M$ if and only if $N \ll_e M$ and $K \ll_e M$.
- (4) If $K \ll_e M$ and $f : M \to N$ is a homomorphism, then $f(K) \ll_e N$. In particular, if $K \ll_e M \leq N$, then $K \ll_e N$.
- (5) Let $K_1 \leq M_1 \leq M$, $K_2 \leq M_2 \leq M$ and $M = M_1 \oplus M_2$. Then $K_1 \oplus K_2$ is e-small in $M_1 \oplus M_2$ if and only if $K_1 \ll_e M_1$ and $K_2 \ll_e M_2$.

Lemma 2.2. Let M be an R-module and $x \in M$. The following conditions are equivalent:

- (1) $x \in \operatorname{Rad}_e(M);$
- (2) $xR \ll_e M$.

Proof. It is clear and omit the proof.

Corrolary 2.3. If $M = \bigoplus_{i \in I} M_i$, then $\operatorname{Rad}_e(M) = \bigoplus_{i \in I} \operatorname{Rad}_e(M_i)$. *Proof.* It is clear $\bigoplus_{i \in I} \operatorname{Rad}_e(M_i) \leq \operatorname{Rad}_e(M)$. For every $j \in I$, call $\pi_j : M \to M_j$ the canonical projection. If $x \in \operatorname{Rad}_e(M)$, then $xR \ll_e M$. It follows that $\pi_j(xR) \ll_e M_j$ or $\pi_j(x) \in \operatorname{Rad}_e(M_j)$. This gives $x \in \bigoplus_{i \in I} \operatorname{Rad}_e(M_i)$. \Box

Lemma 2.4. Let M be a module. The following are equivalent:

- (1) $M \ll_e M$;
- (2) M is a semisimple module;
- (3) Any submodule of M is e-small in M.

Proof. (1) \Rightarrow (2). Let A and B be submodules of M with $A \oplus B \leq^{e} M$. As $M = M + (A \oplus B)$ and $M \ll_{e} M$, then $M = A \oplus B$. It follows that M is a semisimple module.

$$(2) \Rightarrow (1) \text{ and } (2) \Leftrightarrow (3) \text{ are obvious.}$$

Recall that a module M is called local if the sum of all proper submodules of M is also a proper submodule of M. We call M an e-local module if $\operatorname{Rad}_e(M)$ is a maximal submodule of M and $\operatorname{Rad}_e(M) \ll_e M$.

Let N, L be submodules of M. L is called an *e*-supplement of N in M if M = N + L and $N \cap L$ is *e*-small in L. A module M is called *e*-supplemented if every submodule of M has an *e*-supplement in M [12].

Lemma 2.5. Any e-local module is e-supplemented.

Proof. Let M be an e-local module and N be a proper submodule of M. Since $\operatorname{Rad}_e(M)$ is a maximal submodule of M, either $N \leq \operatorname{Rad}_e(M)$ or $\operatorname{Rad}_e(M) + N = M$. If $N \leq \operatorname{Rad}_e(M)$ then M is an e-supplement of N in M. Now suppose $N + \operatorname{Rad}_e(M) = M$. It follows that $N \oplus Y = M$ for some semisimple submodule Y of M. Clearly, Y is an e-supplement of N in M. Thus M is e-supplemented. \Box

Remark 2.6. The following statements hold

- (1) Every simple module is local.
- (2) Every semisimple module M is not e-local, since $\operatorname{Rad}_e(M) = M$.

We next give some characterizations of *e*-local modules with semisimple property. Furthermore, the relationship between of *e*-local modules and local modules are considered.

Proposition 2.7. Every local module is either simple or e-local.

Proof. Assume that L is a local module and not simple. It is well-known that $\operatorname{Rad}(L)$ is the unique maximal submodule of L, $\operatorname{Rad}(L) \ll L$ and $\operatorname{Rad}(L) \leq^{e} L$.

Suppose that $\operatorname{Rad}_e(L) \neq \operatorname{Rad}(L)$. Call $x \in \operatorname{Rad}_e(L)$ and $x \notin \operatorname{Rad}(L)$. Then $xR \ll_e L$ by Lemma 2.2. Since $xR + \operatorname{Rad}(L) = L$ and $\operatorname{Rad}(L) \ll L$, then we have xR = L. Hence, $L \ll_e L$. By Lemma 2.4, L is semisimple. So, $\operatorname{Rad}(L) = 0$. Let H be a proper submodule of M. Since $\operatorname{Rad}(L)$ is an only maximal submodule of M, $H \leq \operatorname{Rad}(L)$. Hence, H = 0. It follows that M is simple, a contradiction. Thus, $\operatorname{Rad}_e(L) \leq \operatorname{Rad}(L)$. On the other hand, since $\operatorname{Rad}(L) \ll L$, we have $\operatorname{Rad}(L) \leq \operatorname{Rad}(L)$. Thus $\operatorname{Rad}(L) = \operatorname{Rad}_e(L)$ is a maximal submodule of L and e-small in L.

Proposition 2.8. The following conditions are equivalent for an e-local module M:

- (1) M is local;
- (2) M is an indecomposable module.
- *Proof.* $(1) \Rightarrow (2)$ is clear.

 $(2) \Rightarrow (1)$. Note that $\operatorname{Rad}_e(M)$ is a maximal submodule of M. Let L be a proper submodule of M. Suppose that $L \not\leq \operatorname{Rad}_e(M)$. Then $L + \operatorname{Rad}_e(M) = M$. Since $\operatorname{Rad}_e(M) \ll_e M$, there is a decomposition $M = L \oplus L'$ with L' semisimple. But M is indecomposable. Thus L = M or L = 0. But $L \not\leq \operatorname{Rad}_e(M)$ and so L = M, a contradiction. It follows that $L \leq \operatorname{Rad}_e(M)$. Consequently, M is a local module.

Theorem 2.9. Let $M = N \oplus K$ be a module. The following statements are equivalent:

- (1) M is e-local;
- (2) Either (a) N is e-local and K is semisimple, or (b) K is e-local and N is semisimple.

Proof. By Corollary 2.3, we have $\operatorname{Rad}_e(M) = \operatorname{Rad}_e(N) \oplus \operatorname{Rad}_e(K)$.

 $(1) \Rightarrow (2)$. Since $\operatorname{Rad}_e(M)$ is a maximal submodule of M, we have

$$\operatorname{Rad}_e(N) = N \text{ or } \operatorname{Rad}_e(K) = K.$$

Assume that $\operatorname{Rad}_e(N) = N$. If X is a submodule of K with $\operatorname{Rad}_e(K) \leq X$, then $\operatorname{Rad}_e(M) \leq N \oplus X$. So $X = \operatorname{Rad}_e(K)$ or X = K. Therefore $\operatorname{Rad}_e(K)$ is a maximal submodule of K. Moreover, $\operatorname{Rad}_e(K)$ is e-small in K and $N \ll_e N$. Thus K is e-local and N is semisimple by Lemma 2.4.

Similarly, if $\operatorname{Rad}_e(K) = K$, then we also have N is e-local and K is semisimple. (2) \Rightarrow (1). Assume that K is e-local and N is semisimple. Then $N \ll_e N$ and $\operatorname{Rad}_e(N) = N$ by Lemma 2.4. So $\operatorname{Rad}_e(M) = N \oplus \operatorname{Rad}_e(K) \ll_e M$. Let $L \leq M$ be a submodule such that $\operatorname{Rad}_e(M) \leq L$. It follows that $\operatorname{Rad}_e(K) \leq K \cap L$. As $\operatorname{Rad}_e(K)$ is a maximal submodule of K, we have $K \cap L = \operatorname{Rad}_e(K)$ or $K \cap L = K$. Note that $L = N \oplus (K \cap L)$. This gives that $L = \operatorname{Rad}_e(M)$ or L = M. Therefore $\operatorname{Rad}_e(M)$ is a maximal submodule of M. Consequently, M is an e-local module.

Corollary 2.10. A direct sum of two e-local modules is never e-local.

Proof. Let $M = L_1 \oplus L_2$ be a module with *e*-local modules L_1 and L_2 . Suppose that M is e-local. By Theorem 2.9, one of the L_i (i = 1, 2) is semisimple. It follows that $Rad_e(L_1) = L_1$ or $Rad_e(L_2) = L_2$, a contradiction.

Example 2.11.

- (1) Let M be a simple singular module. Then M is δ -local but it is not e-local. For example, $M = \mathbb{Z}/p\mathbb{Z}$, p is a prime number. Then M is a \mathbb{Z} -module simple and singular.
- (2) Let N be an e-local projective module and K, a non-projective semisimple module. By Theorem 2.9 and [15, Proposition 2.17], $N \oplus K$ is an e-local module but it is not δ -local.
- (3) Let $R = \mathbb{Z}, M = \mathbb{Z}/24\mathbb{Z}$. Then, $\operatorname{Rad}(M) = \delta(M) = 6M$, $\operatorname{Rad}_{e}(M) = 2M$. So, M is an e-local module but it is neither local nor δ -local.
- (4) Let F be a field and $R = \begin{pmatrix} F & F \\ 0 & F \end{pmatrix}$. Then R is δ -local but it is not local ([15, 2.5]). Moreover, R is an e-local module by projectivity of R.

Proposition 2.12. A module M is e-local if and only if $M = L \oplus N$ such that L is a cyclic e-local module and N is a semisimple module.

Proof. (\Rightarrow) . Assume that M is an e-local module. Then $Rad_e(M)$ is a maximal submodule of M. Call $x \in M$ and $x \notin \operatorname{Rad}_e(M)$. By maximality of $\operatorname{Rad}_e(M)$, then $M = \operatorname{Rad}_e(M) + xR$. Furthermore, $\operatorname{Rad}_e(M) \ll_e M$, there exists a nonzero semisimple submodule X of M such that $M = X \oplus xR$. It follows that $\operatorname{Rad}_e(X) = X$ and so X is not e-local. We deduce that xR is e-local by Theorem 2.9.

 (\Leftarrow) . By Theorem 2.9.

Theorem 2.13. The following conditions are equivalent for a module M:

- (1) M is an e-local module;
- (2) $\operatorname{Rad}_{e}(M)$ is a maximal submodule of M and every proper essential submodule of M is contained in a maximal submodule:
- (3) M has a unique essential maximal submodule and every proper essential submodule of M is contained in a maximal submodule.
- *Proof.* (1) \Leftrightarrow (2) is clear.

 $(1) \Rightarrow (3)$. Since M is e-local, M is not semisimple. Assume that there is a nonzero submodule $X \leq M$ such that $\operatorname{Rad}_{e}(M) \cap X = 0$. Since $\operatorname{Rad}_{e}(M)$ is a maximal submodule of M, $M = \operatorname{Rad}_e(M) \oplus X$. This gives that X is a simple module. As $\operatorname{Rad}_e(M) \ll_e M$, there exists a semisimple submodule $L \leq M$ such that $M = L \oplus X$. We deduce that M is a semisimple module, a contradiction. It follows that $\operatorname{Rad}_{e}(M)$ is essential in M. Now suppose that M contains an essential maximal submodule N such that $N \not\leq \operatorname{Rad}_e(M)$. Then $M = \operatorname{Rad}_e(M) + N$. Since $\operatorname{Rad}_e(M) \ll_e M$, there exists a semisimple submodule E of M such that $M = E \oplus N$. But N is essential in M, we have E = 0 and so N = M, a contradiction. Consequently, $\operatorname{Rad}_e(M)$ is the only essential maximal submodule of M.

 $(3) \Rightarrow (1)$. Assume that every proper essential submodule M is contained in a maximal submodule and K is the only essential maximal submodule of M. If $x \in M \setminus K$, then M = xR + K by maximality of K. By our assumption $K \leq^e M$, xRis not *e*-small in M. This gives that $x \notin \operatorname{Rad}_e(M)$. We deduce that $\operatorname{Rad}_e(M) \leq K$. Let Y be a proper essential submodule M, then $Y \leq K$ and $Y + K = K \neq M$. It follows that $K \ll_e M$, i.e. $K \leq \operatorname{Rad}_e(M)$. Thus $\operatorname{Rad}_e(M) = K \ll_e M$. \Box

Following [12], a module M is called *e*-supplemented if every submodule of M has an *e*-supplement in M. A module M is called amply *e*-supplemented if for any submodules A, B of M with M = A + B, there exists an *e*-supplement P of A such that $P \leq B$. In this case, we say that A has ample *e*-supplements in M.

Proposition 2.14. Let M be an e-local module. If N is a submodule of M, then N is either e-small in M or there exists a semisimple submodule X of M such that $M = N \oplus X$.

Proof. Let N be a submodule of M. Assume N is not e-small in M. Then $N \not\leq \operatorname{Rad}_e(M)$. By maximality of $\operatorname{Rad}_e(M)$, we have $N + \operatorname{Rad}_e(M) = M$. As $\operatorname{Rad}_e(M) \ll_e M$, $M = N \oplus X$ for some a semisimple submodule X of M. \Box

Lemma 2.15. Let N be a maximal submodule of a module M. If K is an e-supplement of N in M, then K is either e-local or semisimple.

Proof. By assumption, we have N + K = M and $N \cap K \ll_e K$. Therefore $N \cap K \leq \text{Rad}_e(K)$. As $M/N \simeq K/(N \cap K)$, $N \cap K$ is a maximal submodule of K. It follows that $\text{Rad}_e(K) = N \cap K$ or $\text{Rad}_e(K) = K$. If $\text{Rad}_e(K) = N \cap K$, then K is an e-local module. Assume that $\text{Rad}_e(K) = K$. For any $x \in K \setminus (N \cap K)$, we have $xR + (N \cap K) = K$. Furthermore, we have $xR \ll_e K$ by Lemma 2.2 and $N \cap K \ll_e K$. Thus $K \ll_e K$ by Lemma 2.1. By Lemma 2.4, K is a semisimple module. \Box

Lemma 2.16. Let $L_1, L_2, ..., L_n$ be submodules of M such that either L_i is e-local or L_i is semisimple. Assume that N is a submodule of M and $N + L_1 + ... + L_n$ has an e-supplement K in M. Then, there exists a subset I of $\{1, ..., n\}$ such that $K + \sum_{i \in I} X_i$ is an e-supplement of N in M, where $X_i = L_i$ or X_i is a semisimple direct summand of L_i .

Proof. If n = 1 then $N + (K + L_1) = M$ and $K \cap (N + L_1) \ll_e K$. Call $H = (N + K) \cap L_1$. Assume that $H \ll_e L_1$. We have

$$N \cap (K + L_1) \le [(N + L_1) \cap K] + [(N + K) \cap L_1 \ll_e K + L_1].$$

It follows that $K + L_1$ is an *e*-supplement of N in M.

If $H \not\ll_e L_1$ then L_1 is not semisimple by Lemma 2.4. By hypothesis, L_1 is *e*-local. From Proposition 2.14, there exists a semisimple submodule $X_1 \leq L_1$ such that $H \oplus X_1 = L_1$. Hence $N + (K + X_1) = M$. We have that

$$N \cap (K + X_1) \le (N + K) \cap X_1 + (N + X_1) \cap K,$$

$$(N+K) \cap X_1 \ll_e X_1, (N+X_1) \cap K \le (N+L_1) \cap K \ll_e K$$

and obtain that $N \cap (K+X_1) \ll_e K+X_1$. This gives that $K+X_1$ is an *e*-supplement of N in M.

Assume that n > 1. By induction on n, there exist a subset \mathcal{J} of $\{2, ..., n\}$ and $X_j \leq L_j, j \in \mathcal{J}$ such that $K + \sum_{j \in \mathcal{J}} X_j$ is an *e*-supplement of $N + L_1$ in M, which either $X_j = L_j$ or X_j is a semisimple direct summand of L_j for all $j \in \mathcal{J}$. Then, there exists a submodule X_1 of L_1 such that $K + \sum_{j \in \mathcal{J}} X_j + X_1$ is an *e*-supplement

of N in M and either $X_1 = L_1$ or X_1 is a semisimple direct summand of L_1 . \Box

Proposition 2.17. Let M be a finitely generated module. The following conditions are equivalent:

- (1) M is an amply e-supplemented module;
- (2) Every maximal submodue of M has ample e-supplement in M;
- (3) If L, N are submodules of M and M = L + N then $M = N + L_1 + ... + L_n$, where n is positive integer number, either L_i is e-local or L_i is semisimple.

Proof. $(1) \Rightarrow (2)$. It is clear.

(2) \Rightarrow (3). Let N, L be submodules of M and M = N + L. Call Γ a class of all submodules X of M such that $X \leq L$ and $X = X_1 + \ldots + X_k$, where either X_i is e-local or X_i is semisimple. Assume that $M \neq N + A$ for all $A \in \Gamma$. By [15, Lemma 3.5], there exists a submodule $U \leq M$ such that $N \leq U$ and U is a maximal submodule of M satisfying $M \neq U + A$ for all $A \in \Gamma$. Since M is finitely generated and $U \neq M$, there exists a maximal submodule $K \leq M$ such that $U \leq K$. So K + L = M. By hypothesis, there exists a submodule $E \leq L$ such that E is an e-supplement of K in M. Following Lemma 2.15, either E is e-local or E is semisimple. It is easy to see that $U \neq U + E$. Otherwise, we have $E \leq U \leq K$ and K = K + E = M. It follows M = U + E + F, $F \in \Gamma$. So $E + F \in \Gamma$, a contradiction. (3) \Rightarrow (1). By Lemma 2.16.

Lemma 2.18. Let N, L be submodules of M such that M = N + L. If L is an *e*-supplemented module then L contains an *e*-supplement of N in M.

Proof. By hypothesis, there exists a submodule K of L such that $(N \cap L) + K = L$ and $(N \cap L) \cap K \ll_e K$. Then N + K = M and $N \cap K \ll_e K$. So K is an *e*-supplement of N in M.

Proposition 2.19. Let M be a module. If every cyclic submodule of M is e-supplemented then every maximal submodule of M has ample e-supplement.

Proof. Assume that N is a maximal submodule of M. Let L be a submodule of M such that M = N + L. There exists x in L satisfying $x \notin N$ and xR + N = M. Following Lemma 2.18, xR containt an e-supplement of N in M.

Corollary 2.20. If M is a finitely generated module and every cyclic submodule of M is e-supplemented then M is an e-supplemented module.

Proof. By Proposition 2.17 and Proposition 2.19.

3. T-e-noncosingular Modules

Let M, N be right R-modules. We call M \mathfrak{T} -e-noncosingular relative to N if Im f is not e-small in N for any nonzero homomorphism $f: M \to N$. M is called \mathfrak{T} -e-noncosingular if M is \mathfrak{T} -e-noncosingular relative to M. The ring R is called right (left) \mathfrak{T} -e-noncosingular if the right (left) module R_R ($_RR$) is \mathfrak{T} -e-noncosingular, respectively.

We denote

$$\nabla_e[M,N] = \{f : M \to N | \operatorname{Im} f \ll_e N \}.$$

It is easily to check that M is \mathcal{T} -*e*-noncosingular relative to N if and only if $\nabla_e[M, N] = 0$.

Proposition 3.1. Let M, N be right R-modules and K is a direct summand of M. If $\nabla_e[M, N] = 0$ then $\nabla_e[K, N] = 0$.

Proof. Assume that $M = K \oplus L$ and $\varphi \in \nabla_e[K, N]$. Then $\operatorname{Im} \varphi \ll_e N$. We consider the homomorphism $\varphi \oplus 0_L : M \to N$ defined by $(\varphi \oplus 0_L)(k+l) = \varphi(k)$ for all $k \in K, l \in L$. So $\operatorname{Im}(\varphi \oplus 0_L) = \operatorname{Im} \varphi \ll_e N$. As $\nabla_e[M, N] = 0, \varphi \oplus 0_K = 0$ and hence $\varphi = 0$.

Proposition 3.2. Let M, N be right R-modules. If $\nabla_e[M, N] = 0$ then $\nabla_e[M, P] = 0$ for all submodule P of N.

Proof. Assume that $P \leq N$ and $\varphi \in \nabla_e[M, P]$. Then $\operatorname{Im} \varphi \ll_e P$. It follows that $\operatorname{Im} \varphi \ll_e N$. Since $\nabla_e[M, N] = 0$, $\varphi = 0$. \Box

Corollary 3.3. Every direct summand of a T-e-noncosingular module is also a T-e-noncosingular module.

Proof. It is followed from Proposition 3.1.

Proposition 3.4. Let $M = \bigoplus_{i \in I} M_i$, $N = \bigoplus_{j \in J} N_j$ be right *R*-modules, where I, J are non-empty sets. Then $\nabla_e[M, N] = 0$ if only if $\nabla_e[M_i, N_j] = 0$ for all $i \in I, j \in J$.

Proof. Assume that $\nabla_e[M_i, N_j] = 0$ for all $i \in I, j \in J$. Let $f \in \nabla_e[M, N_j]$ and the conlusion $\iota_i : M_i \to M$. Since $\operatorname{Im} f \ll_e N_j$, $\operatorname{Im} f \iota_i \ll_e N_j$ for all $i \in I$. Hence $f\iota_i = 0$ for all $i \in I$. It follows that f = 0. Now, let $\varphi \in \nabla_e[M, N]$ and the projection $\pi_j : N \to N_j$. Set $\varphi_j = \pi_j \varphi : M \to N_j$. Since $\operatorname{Im} \varphi \ll_e N$, $\operatorname{Im} \varphi_j \ll_e N_j$ for all $i \in I$. By hypothesis, $\varphi_j = 0$. It follows that $\varphi = 0$.

The converse is followed by Lemma 3.1 and Lemma 3.2.

Corollary 3.5. Let $M = \bigoplus_{i \in I} M_i$, $N = \bigoplus_{j \in J} N_j$ be right *R*-modules, where *I*, *J* are non-empty sets. Then *M* is \Im -e-noncosingular relative to *N* if only if M_i is \Im -e-noncosingular relative to N_i for all $i \in I, j \in J$.

Corrllary 3.6. Let $(M_i)_{i \in I}$ be a family of modules. Then $M = \bigoplus_{i \in I} M_i$ is a \mathbb{T} -e-noncosingular if and only if M_i is \mathbb{T} -e-noncosingular relative to M_j for all $i, j \in I$.

Let M be a module. We call M an e-small module if M is e-small in injective envelope of M. We denote

$$\overline{Z}_e(M) = \bigcap \{ \operatorname{Ker} g | g : M \to N, N \text{ is } e \text{-small module} \}.$$

If $\overline{Z}_e(M) = M$, then M is called an *e*-noncosingular module.

Proposition 3.7. The following conditions are equivalent for a ring R:

- (1) Every right R-module is \mathcal{T} -e-noncosingular;
- (2) Every right R-module is e-noncosingular;
- (3) For any right R-module M, $\operatorname{Rad}_e(M) = 0$.

Proof. (1) \Rightarrow (2). Let $N \ll_e E(N)$. We will prove N = 0. We consider the homomorphism $f: M \oplus N \to E(N)$ given by f(m+n) = n for all $m \in M, n \in N$. Then $\text{Im } f = N \ll_e E(N)$. We have that $M \oplus N \oplus E(N)$ is an \mathbb{T} -e-noncosingular module and obtain that $M \oplus N$ is \mathbb{T} -e-noncosingular relative to E(N). This gives f = 0. It is easily to check that N = 0. Furthermore, for any *R*-module *M*, $\overline{Z}_e(M) = \bigcap\{\text{Ker } g | g : M \to 0\} = M$, i.e., *M* is *e*-noncosingular.

 $(2) \Rightarrow (3)$. Assume that N is an e-small submodule of M. Call $\pi : M \oplus N \to N$ the projection. By hypothesis, $M \oplus N$ is e-noncosingular. We have that $\overline{Z}_e(M \oplus N) = M \oplus N$ and obtain that f = 0. Thus N = 0.

 $(3) \Rightarrow (1)$. It is clear.

Now, we denote:

$$Z_{e-M}(N) = \bigcap_{\varphi \in \nabla_e[M,N]} \operatorname{Ker} \varphi$$

Proposition 3.8. Let M be a module. Then the following conditions hold:

- (1) $\overline{Z}_e(M) \leq Z_{e-M}(N)$.
- (2) $Z_{e-M}(N)$ is a fully invariant submodule of M.

(3) $\nabla_{e}[M, N] = 0$ if only if $M = Z_{e-M}(N)$.

(4) If $M = \bigoplus_{i \in I} M_i$ then $\overline{Z}_{e-M}(N) \leq \bigoplus_{i \in I} \overline{Z}_{e-M_i}(N)$.

Proof. (1) By definition, we get

$$\overline{Z}_e(M) \le \bigcap \{ \operatorname{Ker} g : M \to N | N = \operatorname{Im} f, f \in \nabla_e[M, N] \} = Z_{e-M}(N).$$

(2) Assume $f \in \operatorname{End}(M)$ and $\varphi \in \operatorname{Hom}(M, N)$ such that $\operatorname{Im} \varphi \ll_e N$. Therefore $\operatorname{Im} \varphi f \leq \operatorname{Im} \varphi$. So $\operatorname{Im} \varphi f \ll_e N$. For all $x \in Z_{e-M}(N)$, $\varphi(x) = 0$ implies $\varphi f(x) = 0$. Thus $f(x) \in Z_{e-M}(N)$, i.e., $Z_{e-M}(N)$ is fully invariant.

(3) It is clear.

(4) As $Z_{e-M}(N)$ is fully invariant, $Z_{e-M}(N) = \bigoplus_{i \in I} (Z_{e-M}(N) \cap M_i)$. We will prove that $Z_{e-M}(N) \cap M_i \subset Z_{e-M_i}(N)$. Let $x_i \in Z_{e-M}(N) \cap M_i$ and $\varphi_i : M_i \to N$ such that $\operatorname{Im} \varphi_i \ll_e N$. Then $\psi_i : M \to M$ extends $\varphi_i (\psi_i|_{M_j} = 0 \text{ for all } j \neq i)$. This gives $\operatorname{Im} \psi_i \ll_e N$. Thus $\psi_i(x_i) = \varphi_i(x_i) = 0$ and hence $x_i \in Z_{e-M_i}(N)$. \Box

Corollary 3.9. Let M and N be modules. Then M is T-e-noncosingular relative to N if and only if $Z_{e-M}(N) = M$.

Remark 3.10. It is clearly to see that $Z_{e-M}(M) \leq \overline{Z}_{\mathcal{T}}(M) = \bigcap \{ \operatorname{Ker} \varphi | \varphi \in \operatorname{End}(M), \operatorname{Im} \varphi \ll M \}$. So, if M is a \mathcal{T} -e-noncosingular then M is a \mathcal{T} -noncosingular module. The converse is not true in general.

Example 3.11.

- (1) \mathbb{Z} -module \mathbb{Z} is \mathcal{T} -*e*-noncosingular.
- (2) If $M_{\mathbb{Z}} = \mathbb{Z}_6$ then Rad(M) = 0 and $Z_{e-M}(M) = 0$. It follows that M is \mathcal{T} -noncosingular but not \mathcal{T} -e-noncosingular.
- (3) Let R be a proper Dedekind domain and P be a nonzero prime ideal of R. Consider module $M = R(P^{\infty}) \oplus R/P$. Then M is not a \mathcal{T} -noncosingular module (see Example 2.12, [9]). So M is not a \mathcal{T} -e-noncosingular module.
- (4) As $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Q}, \mathbb{Z}_2) = \operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}_2, \mathbb{Q}) = 0$, $\mathbb{Q}_{\mathbb{Z}}$ is \mathcal{T} -*e*-noncosingular relative to \mathbb{Z}_2 and \mathbb{Z}_2 is \mathcal{T} -*e*-noncosingular relative to \mathbb{Q} . Hence $(\mathbb{Q} \oplus \mathbb{Z}_2)_{\mathbb{Z}}$ is \mathcal{T} -*e*-noncosingular by Lemma 3.6.

Proposition 3.12. Let M be an R-module which S = End(M) is Von Neumann regular and $T(M) = \{N \leq M | \operatorname{Rad}_e(N) = N\}$. If T(M) = 0 then M is \mathfrak{T} -enoncosingular.

Proof. Let $f \in \operatorname{End}(M)$ such that $\operatorname{Im} f \ll_e M$. Then $\operatorname{Im} f \leq \operatorname{Rad}_e(M)$. Since S is regular, there exists $g \in S$ such that f = fgf. Hence fg is an idempotent and $M = \operatorname{Im} fg \oplus \operatorname{Ker} fg$. Since $\operatorname{Im} fg \leq \operatorname{Im} f \leq \operatorname{Rad}_e(M)$, $\operatorname{Rad}_e(M) = \operatorname{Rad}_e(\operatorname{Im} fg) \oplus \operatorname{Rad}_e(\operatorname{Ker} fg)$. So, $\operatorname{Im} fg \cap \operatorname{Rad}_e(M) = \operatorname{Im} fg = \operatorname{Rad}_e(\operatorname{Im} fg) \oplus (\operatorname{Im} fg \cap \operatorname{Rad}_e(\operatorname{Ker} fg))$. It follows $\operatorname{Im} fg = \operatorname{Rad}_e(\operatorname{Im} fg)$. Therefore $\operatorname{Im} fg \in T(M)$. We have fg = 0 and f = 0. □ Note that if $\operatorname{Rad}_e(M) = 0$ then M is a \mathcal{T} -*e*-noncosingular module. But the converse is not true in general. For example, let \mathbb{Z} -module $M = \mathbb{Q} \oplus \mathbb{Z}_2$ in Example 3.11. Then M is \mathcal{T} -*e*-noncosingular. However, we have

$$\operatorname{Rad}_e(\mathbb{Q} \oplus \mathbb{Z}_2) = \operatorname{Rad}_e(\mathbb{Q}) \oplus \operatorname{Rad}_e(\mathbb{Z}_2) = 0 \oplus \mathbb{Z}_2 \neq 0.$$

Proposition 3.13. Let M = xR be a cyclic module such that r(x) is an ideal of R. Then M is \mathcal{T} -e-noncosingular if and only if $\operatorname{Rad}_e(M) = 0$.

Proof. Assume that M is \mathfrak{T} -e-noncosingular and $\operatorname{Rad}_e(M) \neq 0$. There exists $a \in R$ such that $xa \neq 0$ and $xa \in \operatorname{Rad}_e(M)$. Call f an endomorphism of M with f(xr) = xar for all $r \in R$. We have $\operatorname{Im} f \leq \operatorname{Rad}_e(M)$ and $f \neq 0$. But $\operatorname{Rad}_e(M) \ll_e M$, a contradiction. The converse is clear. \Box

Corollary 3.14. A ring R is right T-e-noncosingular if and only if $\operatorname{Rad}_e(R_R) = 0$.

Example 3.15.

- (1) Consider \mathbb{Z}_6 as a ring. We have $J(\mathbb{Z}_6) = 0$, $\operatorname{Rad}_e(\mathbb{Z}_6) = \mathbb{Z}_6$. So \mathbb{Z}_6 is \mathcal{T} -noncosingular but is not \mathcal{T} -e-noncosingular.
- (2) Let R be a discrete valuation ring with maximal ideal m. Then R is not \mathcal{T} -noncosingular following Example 4.7,[14]. So R is not \mathcal{T} -e-noncosingular.

For $N \leq M, I \leq S = \text{End}(M)$, denote $N \leq M$ means that N is a fully invariant submodule of M and $E_M(I) = \sum_{\phi \in I} \text{Im } \phi$; $D_S(N) = \{\phi \mid \text{Im } \phi \leq N\}$.

Lemma 3.16. Let $N \leq M, I \leq S, P \leq M, L \leq S$. Then:

- (1) $E_M(D_S(E_M(I))) = E_M(I);$
- (2) $D_S(E_M(D_S(N))) = D_S(N);$
- (3) $E_M(L) \leq M$;
- (4) $D_S(P) \leq S$.

Proof. (1) $E_M(D_S(E_M(I))) = \sum_{\phi \in D_S(E_M(I))} \operatorname{Im} \phi \leq E_M(I)$. Conversely, for all $\varphi \in I, \operatorname{Im} \varphi \leq E_I(M)$. So $\varphi \in D_S(E_M(I)) = \{\phi | \operatorname{Im} \phi \leq E_M(I)\}$.

(2) $E_M(D_S(N)) \leq N$ implies $D_S(E_M(D_S(N))) \leq D_S(N)$. Conversely, for all φ , Im $\varphi \leq N$, Im $\varphi \leq \sum_{\text{Im } \phi \leq N} \text{Im } \phi = E_M(D_S(N))$. So $D_S(N) \leq D_S(E_M(D_S(N)))$.

(3) Let $f: M \to M, f(E_M(L)) = \sum_{\phi \in L} f(\operatorname{Im} \phi) = \sum_{\phi \in L} \operatorname{Im} \phi f$. Since $L \leq S, \phi f \in L$. So $\sum_{\substack{\phi \in L \\ (\phi) \in D}} \operatorname{Im} \phi f \leq \sum_{\substack{\psi \in L \\ \phi \in L}} \operatorname{Im} \psi = E_M(L)$.

(4) For all $\psi \in S$, $\phi \in D_S(P)$. We have $\psi \phi(M) \le \psi(P) \le P$ and $\phi \psi(M) \le \phi(M) \le P$. So $\psi \phi \in D_S(P)$ and $\phi \psi \in D_S(P)$.

Proposition 3.17. Let M be an R-module. M is \mathcal{T} -e-noncosingular if and only if for all $I \leq S, E_M(I) = eM \oplus L$, in which $L \ll_e M, e^2 = e \in S$ implies $I \cap (1-e)S = 0$.

Proof. (⇒). Assume $I \leq S$, $E_M(I) = eM \oplus L$, in which $L \ll_e M$, $e^2 = e \in S$. We have $E_M(I \cap (1-e)S) \leq E_M(I) \cap E_M(1-e)S \leq E_M(I) \cap (1-e)M = (eM \oplus L) \cap (1-e)M \leq (1-e)L$. Since $L \ll_e M$, $(1-e)L \ll_e M$. Hence $E_M(I \cap (1-e)S) \ll_e M$. *M* is \Im -*e*-noncosingular, so $I \cap (1-e)S = 0$.

(⇐). Let $\phi \in S$, Im $\phi \ll_e M$. We have $E_M(\phi S) = \sum_{\psi \in S} \operatorname{Im} \phi \psi = \phi(\sum_{\psi \in S} \operatorname{Im} \psi) = \phi(M) \ll_e M$. By hypothesis, $I \cap S = 0$. Hence I = 0, i.e., $\phi = 0$. \Box

Corollary 3.18. *M* is a \mathbb{T} -*e*-noncosingular module if and only if for all $I \leq S, E_M(I) \ll_e M$ implies that I = 0.

Now, we call M an e- \mathcal{K} - module if for all $N \leq M$, $D_S(N) = 0$ implies $N \ll_e M$.

Proposition 3.19. *M* is an e-X-module if and only if, for all $N \leq M$, $E_M(D_S(N))$ is a direct summand of *M* implies that $N = E_M(D_S(N)) \oplus L$ with $L \ll_e M$.

Proof. Assume that $N \leq M$ and $E_M(D_S(N)) \leq^{\oplus} M$. Then $E_M(D_S(N)) = eM, e^2 = e \in S$. Clearly, $eM = E_M(D_S(N)) \leq N$. On the other hand, $D_S(eM) \cap D_S((1-e)M \cap N) = 0$ and $D_S((1-e)M \cap N) \leq D_S(N) = D_S(eM)$. Hence $D_S((1-e)M \cap N) = 0$. Since M is an e- \mathcal{K} -module, we have $(1-e)M \cap N \ll_e M$. Thus $N = E_M(D_S(N)) \oplus ((1-e)M \cap N)$ and $(1-e)M \cap N \ll_e M$.

Conversely, assume $N \leq M$ and $D_S(N) = 0$. Then $E_M(D_S(N)) = 0$. By hypothesis, $N = E_M(D_S(N)) \oplus L$ with $L \ll_e M$. Thus $N = L \ll_e M$. \Box

Recalled that a module M is *e*-lifting if for all submodule N of M, there exists decompositon $M = A \oplus B$ such that $A \leq N$ and $N \cap B \ll_e B$ ([12]). A module M is called dual Baer if for all $N \leq M$, there exists an idempotent $e \in S = \text{End}(M)$ such that $D_S(N) = eS([8])$.

Lemma 3.20. A dual Baer e-K-module is e-lifting.

Proof. Assume *M* is a dual Baer and *e*-𝔅-module. Let *N* be a submodule of *M*. There exists an idempotent $e \in S = \operatorname{End}(M)$ such that $D_S(N) = eS$. We have $eM = E_M(eS) \leq N$. Hence $N = eM \oplus ((1-e)M \cap N)$. For all $\phi \in D_S((1-e)M \cap N)$, Im $\phi \leq N$. It follows $\phi \in D_S(N) = eS$. Since $\phi(M) \leq (1-e)M \cap eM = 0$, then $\phi = 0$, i.e., $D_S((1-e)M \cap N) = 0$. Since *M* is an *e*-𝔅-module, $(1-e)M \cap N \ll_e M$. Thus *M* is *e*-lifting. □

Theorem 3.21. A T-e-noncosingular e-lifting module is dual Baer.

Proof. Assume that M is a \mathfrak{T} -e-noncosingular e-lifting module and $N \leq M$. Then $N = eM \oplus B$ which $e^2 = E \in S, B = (1-e)M \cap N \ll_e M$. Hence $eS \leq D_S(eM) \leq D_S(N)$. If there exists $\phi \in D_S(N) \setminus eS$, then $(1-e)\phi = eS \cap D_S(N)$. We obtain that $(1-e)\phi M \leq N$ and $(1-e)\phi M \leq (1-e)M$. So $(1-e)\phi M \leq N \cap (1-e)M = B \ll_e M$.

Since *M* is \mathcal{T} -*e*-noncosingular, which follows $(1-e)\phi = 0$, i.e., $\phi = e\phi \in eS$. This is a contradition. Thus $D_S(N) = eS$, i.e., *M* is dual Baer. \Box

Lemma 3.22. Let M be a \mathcal{T} -e-noncosingular module and X, a fully invariant submodule of M and $X = N \oplus B$ with $B \ll_e M$. If N is a direct summand of M then N is a fully invariant submodule of M.

Proof. Assume $M = N \oplus P$ and $\phi \in \text{End}(M)$. Set $\psi = \pi_P \phi|_N \pi_N$. If there exists $x \in N$ such that $\phi(x) \notin N$, then $\psi(x) \neq 0$. Since X is a fully invariant submodule of M, $\phi(N) \leq \phi(X) \leq X$. So

$$\phi(M) = \pi_P \phi|_N \pi_N(M) = \pi_P \phi|_N(N) \le \pi_P(X) = X \cap P.$$

Then $X \cap P \cong B$. It follows $X \cap P \ll_e M$. As M is \mathfrak{T} -e-noncosingular, $\psi = 0$, a contradiction. Thus $\phi(N) \leq N$. \Box

Proposition 3.23. Let M be a T-e-noncosingular module. The following conditions are equivalent:

- (1) For every fully invariant submodule N of M, there exists a direct summand B of M such that $N/B \ll_e M/B$;
- (2) For every fully invariant submodule N of M, there exists a fully invariant direct summand B of M such that N/B ≪_e M/B.

Proof. (2) \Rightarrow (1) is clear. It suffices to prove (1) \Rightarrow (2). Assume $X \leq M$. By (1), we have $X = N \oplus B$, $B \ll_e M$ and N is a direct summand of M. By Lemma 3.22, N is a fully invariant submodule of M. Thus (2) holds. \Box

Acknowledgments. The authors would like to thank the referee for the very helpful comments and suggestions.

References

- I. Al-Khazzi and P. F. Smith, Modules with chain conditions on superfluous submodules, Comm. Algebra, 19(8)(1991), 2331–2351.
- [2] F. W. Anderson, K. R. Fuller, *Rings and Categories of Modules*, Springer -Verlag -New York, 1974.
- [3] P. Aydogdu, Rings over which every module has a flat δ-cover, Turkish J. Math., 37(2013), 182–194.
- [4] E. Büyükaşik and C. Lomp, When δ-semiperfect rings are semiperfect, Turkish J. Math., 34(2010), 317–324.
- [5] N. Er, E. Nil Orhan, Lifting modules with indecomposable decompositions, Comm. Algebra, 36(2)(2008), 395–404.
- [6] R. E. Jonhson, Structure theory of faithful rings, Trans. Amer. Math. Soc., 84(1957), 508–522.

- [7] M. T. Kosan, δ-lifting and δ-supplemented modules, Algebra Colloq., 14(1)(2007), 53–60.
- [8] D. Keskin Tütüncü and R. Tribak, On dual Baer modules, Glassgow Math. J., 52(2010), 261–269.
- [9] D. Keskin Tütüncü and R. Tribak, On T-noncosingular modules, Bull. Aust. Math. Soc., 80(2009), 462–471.
- [10] A. C. Ozcan, The torsion theory cogenerated by δ-M-small modules and GCO-modules, Comm. Algebra, 35(2007), 623–633.
- [11] T.C. Quynh, On pseudo semi-projective modules, Turkish J. Math., 37(1)(2013), 27–36.
- [12] T. C. Quynh and P. H. Tin, Somes Properties of e-supplemented and e-lifting modules, Vietnam J. Math., 41(3)(2013), 303–312.
- [13] Y. Talebi and N. Vanaja, The torsion theory cogenerated by M-small modules, Comm. Algebra, 30(3)(2002), 1449–1460.
- [14] R. Tribak, Some results on T-noncosingular modules, Turkish J. Math., 38(2014), 29–39.
- [15] R. Tribak, On δ-local modules and amply δ-supplemented modules, J. Algebra Appl., 12(2)(2013), 1250144, 14 pp.
- [16] Y. Wang, δ-small submodules and δ-supplemented Modules, Int. J. Math. Math. Sci. (2007), 58–132
- [17] R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach, Reading 1991.
- [18] M. Yousif and Y. Zhou, Semiregular, Semiperfect and perfect rings relative to an ideal, Rocky Mountain J. Math., 32(4)(2002) 1651–1671.
- [19] Y. Zhou, Generalizations of perfect, semiperfect, and semiregular rings, Algebra Colloq., 7(2000), 305–318.
- [20] D. X. Zhou, X. R. Zhang, Small-essential submodules and Morita duality, Southeast Asian Bull. Math., 35(2011), 1051–1062.