Some Characterizations of Modules via Essentially Small Submodules

Le Van Thuyet
Department of Mathematics, Hue University, 3 Le Loi, Hue city, Vietnam
e-mail: lvthuyet@hueuni.edu.vn
Phan Hong Tin*
Department of Mathematics, Hue University's College of Education, 32 Le Loi, Hue city, Vietnam
e-mail: phtin@hueic.edu.vn

Abstract. In this paper, the structure of e-local modules and classes of modules via essentially small are investigated. We show that the following conditions are equivalent for a module M :
(1) M is e-local;
(2) $\operatorname{Rad}_{e}(M)$ is a maximal submodule of M and every proper essential submodule of M is contained in a maximal submodule;
(3) M has a unique essential maximal submodule and every proper essential submodule of M is contained in a maximal submodule.

1. Introduction

Throughout this paper, R will be an associative ring with identity and all modules are unitary R-module. We write M_{R} (resp., ${ }_{R} M$) to indicate that M is a right (resp., left) R-module. All modules are right unital unless stated otherwise. If N is a submodule of M, we denote by $N \leq M$. Moreover, we write $N \leq{ }^{e} M, N \leq{ }^{\oplus} M$ and $N \ll M$ to indicate that N is an essential submodule, a direct summand and a small submodule of M, respectively. If X is a subset of a right R-module M, the

[^0]right annihilator of X in R is denoted by $r_{R}(X)$ or simply $r(X)$ if no confusion appears.

Recently, some authors have studied generalizations of semiperfect rings and perfect rings via projectivity of modules and small submodules of modules see [7, $11,16,18,19] \ldots$ Following [19], a submodule N of M is called δ-small in M (denote $N \ll{ }_{\delta} \mathrm{M}$) if $M=N+L$ and M / L singular then $L=M$. In [7], the author extends the definition of lifting and supplemented modules to what he calls δ-lifting and δ supplemented. This extension is made by replacing in the definitions the concept of small submodule by the corresponding one of δ-small submodule. Most properties of lifting and supplemented modules are adapted to this new setting.

A submodule N of M is called e-small (essentially small) in M, denote $N<_{e} M$, if $M=N+L$ and $L \leq^{e} M$ then $L=M$ ([20]). In [12], the authors were introduced a class of all e-lifting modules. A module M is called e-lifting if for any $N \leq M$, there exists a decomposition $M=A \oplus B$ such that $A \leq N$ and $N \cap B \ll_{e} M$. Some homology properties of e-lifting modules class were obtained. It proved that $\operatorname{Rad}_{e}(M)$ is a Noetherian (Artinian) module if only if M has ACC(reps. DCC) on e-small submodules.

In [19], the author denoted

$$
\delta(M)=\operatorname{Re} j_{M}(\wp)=\bigcap\{N \leq M \mid M / N \in \wp\}=\sum\left\{N \leq M \mid N<_{\delta} M\right\}
$$

where \wp is the class of all singular simple modules. Similarly, there is the concept of modules via e-small submodules ([20]). Call \wp_{0} the class of all essential maximal submodules of M.

$$
\operatorname{Rad}_{e}(M)=\bigcap\left\{N \leq M \mid N \in \wp_{0}\right\}=\sum\left\{N \leq M \mid N<_{e} M\right\} .
$$

Note that $\operatorname{Rad}(M) \leq \delta(M) \leq \operatorname{Rad}_{e}(M)$. If $\delta(M) \ll_{\delta} M$ and $\delta(M)$ is a maximal submodule of M, M is called a δ-local module ([4]). In [15], the author studied δ-local modules and established some properties of finitely generated amply δ-supplemented modules. A necessary and sufficient condition is provided for a module to be δ-local module. In this paper, we continue studying class of e supplemented modules and introduce the concept of e-local modules. A module M is called e-local if $\operatorname{Rad}_{e}(M)$ is a maximal submodule of M and $\operatorname{Rad}_{e}(M) \ll_{e} M$. We show that $M=N \oplus K$ is an e-local module if and only if either N is an e-local module and K is semisimple, or K is an e-local module and N is semisimple.

Recall that the singular submodule of a module M is the set

$$
Z(M)=\left\{m \in M \mid r(m) \leq^{e} R\right\} .
$$

In [6], the author introduced the notions of singular modules and nonsigular modules. A module M is called singular (resp., nonsingular) if $Z(M)=M$ (resp., $Z(M)=0)$. In [13], the author defined the notion of dual singular submodules, that is $\bar{Z}(M)=\bigcap\{\operatorname{Ker} g \mid g: M \rightarrow N, N$ is a small module $\} . M$ is called cosingular (resp., noncosingular) module if $\bar{Z}(M)=0$ (resp., $\bar{Z}(M)=M$). A generalization
of cosingular and noncosingular, which is δ-cosingular and δ-noncosingular (respectively) were introduced and studied in [10].

In [8], the authors introduce the notion of \mathcal{T}-noncosingular modules as the notion of dual \mathcal{K}-nonsingular modules and generalizations of noncosingular modules. It turns out that some results about \mathcal{K}-nonsingular modules hold for dual \mathcal{T}-noncosingular modules. The structure of finitely generated \mathcal{T}-noncosingular \mathbb{Z} modules is described, and a necessary and sufficient condition is provided for a direct sum of \mathcal{T}-noncosingular modules to be \mathcal{T}-noncosingular. Rings for which all right modules are \mathcal{T}-noncosingular are shown to be precisely right V-rings. A module M is called \mathcal{T}-noncosingular relative to N if, for every nonzero homomorphism $f: M \rightarrow N, \operatorname{Im} f$ is not small in $N . M$ is called \mathcal{T}-noncosingular if M is \mathcal{T}-noncosingular relative to M. In this paper, we introduce to a special case of \mathcal{T} noncosingular modules which are \mathcal{T} - e-noncosingular modules. A module M is called \mathcal{T} - e-noncosingular relative to N if, for every nonzero homomorphism $f: M \rightarrow N$, $\operatorname{Im} f$ is not e-small in $N . M$ is called \mathcal{T} - e-noncosingular if M is \mathcal{T} - e-noncosingular relative to M. Some properties of this class of modules and the relation to other kinds of modules are shown in section 3 . We show that every right R-module is \mathcal{T} - e-noncosingular if and only if every right R-module is e-noncosingular, if and only if for any right R-module $M, \operatorname{Rad}_{e}(M)=0$. Furthermore, \mathcal{T} - e-noncosingular modules and e-lifting modules are dual Baer modules.

2. e-local Modules

Recall that a submodule N of M is said to be e-small in M (denoted by $N<_{e} M$), if $N+L=M$ with $L \leq^{e} M$ implies $L=M$.

The following lemma is proved in [20]:
Lemma 2.1. Let M be a module. Then
(1) If $N<_{e} M$ and $K \leq N$, then $K \ll_{e} M$ and $N / K \ll_{e} M / K$.
(2) Let $N<_{e} M$ and $M=X+N$. Then $M=X \oplus Y$ for some a semisimple submodule Y of M.
(3) Let $N, K \leq M$. Then $N+K<_{e} M$ if and only if $N<_{e} M$ and $K \ll_{e} M$.
(4) If $K<_{e} M$ and $f: M \rightarrow N$ is a homomorphism, then $f(K)<_{e} N$. In particular, if $K \ll_{e} M \leq N$, then $K \ll_{e} N$.
(5) Let $K_{1} \leq M_{1} \leq M, K_{2} \leq M_{2} \leq M$ and $M=M_{1} \oplus M_{2}$. Then $K_{1} \oplus K_{2}$ is e-small in $M_{1} \oplus M_{2}$ if and only if $K_{1}<_{e} M_{1}$ and $K_{2}<_{e} M_{2}$.

Lemma 2.2. Let M be an R-module and $x \in M$. The following conditions are equivalent:
(1) $x \in \operatorname{Rad}_{e}(M)$;
(2) $x R \ll_{e} M$.

Proof. It is clear and omit the proof.
Corrolary 2.3. If $M=\bigoplus_{i \in I} M_{i}$, then $\operatorname{Rad}_{e}(M)=\bigoplus_{i \in I} \operatorname{Rad}_{e}\left(M_{i}\right)$.
Proof. It is clear $\bigoplus_{i \in I} \operatorname{Rad}_{e}\left(M_{i}\right) \leq \operatorname{Rad}_{e}(M)$. For every $j \in I$, call $\pi_{j}: M \rightarrow M_{j}$ the canonical projection. If $x \in \operatorname{Rad}_{e}(M)$, then $x R<_{e} M$. It follows that $\pi_{j}(x R) \ll_{e}$ M_{j} or $\pi_{j}(x) \in \operatorname{Rad}_{e}\left(M_{j}\right)$. This gives $x \in \bigoplus_{i \in I} \operatorname{Rad}_{e}\left(M_{i}\right)$.
Lemma 2.4. Let M be a module. The following are equivalent:
(1) $M \ll_{e} M$;
(2) M is a semisimple module;
(3) Any submodule of M is e-small in M.

Proof. (1) \Rightarrow (2). Let A and B be submodules of M with $A \oplus B \leq^{e} M$. As $M=M+(A \oplus B)$ and $M<_{e} M$, then $M=A \oplus B$. It follows that M is a semisimple module.
$(2) \Rightarrow(1)$ and $(2) \Leftrightarrow(3)$ are obvious.
Recall that a module M is called local if the sum of all proper submodules of M is also a proper submodule of M. We call M an e-local module if $\operatorname{Rad}_{e}(M)$ is a maximal submodule of M and $\operatorname{Rad}_{e}(M)<_{e} M$.

Let N, L be submodules of $M . L$ is called an e-supplement of N in M if $M=N+L$ and $N \cap L$ is e-small in L. A module M is called e-supplemented if every submodule of M has an e-supplement in M [12].
Lemma 2.5. Any e-local module is e-supplemented.
Proof. Let M be an e-local module and N be a proper submodule of M. Since $\operatorname{Rad}_{e}(M)$ is a maximal submodule of M, either $N \leq \operatorname{Rad}_{e}(M)$ or $\operatorname{Rad}_{e}(M)+$ $N=M$. If $N \leq \operatorname{Rad}_{e}(M)$ then M is an e-supplement of N in M. Now suppose $N+\operatorname{Rad}_{e}(M)=M$. It follows that $N \oplus Y=M$ for some semisimple submodule Y of M. Clearly, Y is an e-supplement of N in M. Thus M is e-supplemented.
Remark 2.6. The following statements hold
(1) Every simple module is local.
(2) Every semisimple module M is not e-local, since $\operatorname{Rad}_{e}(M)=M$.

We next give some characterizations of e-local modules with semisimple property. Furthermore, the relationship between of e-local modules and local modules are considered.
Proposition 2.7. Every local module is either simple or e-local.
Proof. Assume that L is a local module and not simple. It is well-known that $\operatorname{Rad}(L)$ is the unique maximal submodule of $L, \operatorname{Rad}(L) \ll L$ and $\operatorname{Rad}(L) \leq^{e} L$.

Suppose that $\operatorname{Rad}_{e}(L) \neq \operatorname{Rad}(L)$. Call $x \in \operatorname{Rad}_{e}(L)$ and $x \notin \operatorname{Rad}(L)$. Then $x R \ll_{e} L$ by Lemma 2.2. Since $x R+\operatorname{Rad}(L)=L$ and $\operatorname{Rad}(L) \ll L$, then we have $x R=L$. Hence, $L<_{e} L$. By Lemma 2.4, L is semisimple. So, $\operatorname{Rad}(L)=0$. Let H be a proper submodule of M. Since $\operatorname{Rad}(L)$ is an only maximal submodule of M, $H \leq \operatorname{Rad}(L)$. Hence, $H=0$. It follows that M is simple, a contradiction. Thus, $\operatorname{Rad}_{e}(L) \leq \operatorname{Rad}(L)$. On the other hand, since $\operatorname{Rad}(L) \ll L$, we have $\operatorname{Rad}(L) \leq$ $\operatorname{Rad}_{e}(L)$. Thus $\operatorname{Rad}(L)=\operatorname{Rad}_{e}(L)$ is a maximal submodule of L and e-small in L.

Proposition 2.8. The following conditions are equivalent for an e-local module M :
(1) M is local;
(2) M is an indecomposable module.

Proof. (1) $\Rightarrow(2)$ is clear.
$(2) \Rightarrow(1)$. Note that $\operatorname{Rad}_{e}(M)$ is a maximal submodule of M. Let L be a proper submodule of M. Suppose that $L \not \leq \operatorname{Rad}_{e}(M)$. Then $L+\operatorname{Rad}_{e}(M)=M$. Since $\operatorname{Rad}_{e}(M)<_{e} M$, there is a decomposition $M=L \oplus L^{\prime}$ with L^{\prime} semisimple. But M is indecomposable. Thus $L=M$ or $L=0$. But $L \not \leq \operatorname{Rad}_{e}(M)$ and so $L=M$, a contradiction. It follows that $L \leq \operatorname{Rad}_{e}(M)$. Consequently, M is a local module.

Theorem 2.9. Let $M=N \oplus K$ be a module. The following statements are equivalent:
(1) M is e-local;
(2) Either (a) N is e-local and K is semisimple, or (b) K is e-local and N is semisimple.

Proof. By Corollary 2.3, we have $\operatorname{Rad}_{e}(M)=\operatorname{Rad}_{e}(N) \oplus \operatorname{Rad}_{e}(K)$.
$(1) \Rightarrow(2)$. Since $\operatorname{Rad}_{e}(M)$ is a maximal submodule of M, we have

$$
\operatorname{Rad}_{e}(N)=N \text { or } \operatorname{Rad}_{e}(K)=K
$$

Assume that $\operatorname{Rad}_{e}(N)=N$. If X is a submodule of K with $\operatorname{Rad}_{e}(K) \leq X$, then $\operatorname{Rad}_{e}(M) \leq N \oplus X$. So $X=\operatorname{Rad}_{e}(K)$ or $X=K$. Therefore $\operatorname{Rad}_{e}(K)$ is a maximal submodule of K. Moreover, $\operatorname{Rad}_{e}(K)$ is e-small in K and $N<_{e} N$. Thus K is e-local and N is semisimple by Lemma 2.4.

Similarly, if $\operatorname{Rad}_{e}(K)=K$, then we also have N is e-local and K is semisimple.
$(2) \Rightarrow(1)$. Assume that K is e-local and N is semisimple. Then $N<_{e} N$ and $\operatorname{Rad}_{e}(N)=N$ by Lemma 2.4. So $\operatorname{Rad}_{e}(M)=N \oplus \operatorname{Rad}_{e}(K) \ll_{e} M$. Let $L \leq M$ be a submodule such that $\operatorname{Rad}_{e}(M) \leq L$. It follows that $\operatorname{Rad}_{e}(K) \leq K \cap L$. As $\operatorname{Rad}_{e}(K)$ is a maximal submodule of K, we have $K \cap L=\operatorname{Rad}_{e}(K)$ or $K \cap L=K$. Note that $L=N \oplus(K \cap L)$. This gives that $L=\operatorname{Rad}_{e}(M)$ or $L=M$. Therefore $\operatorname{Rad}_{e}(M)$ is a maximal submodule of M. Consequently, M is an e-local module.

Corollary 2.10. A direct sum of two e-local modules is never e-local.
Proof. Let $M=L_{1} \oplus L_{2}$ be a module with e-local modules L_{1} and L_{2}. Suppose that M is e-local. By Theorem 2.9, one of the $L_{i}(i=1,2)$ is semisimple. It follows that $\operatorname{Rad}_{e}\left(L_{1}\right)=L_{1}$ or $\operatorname{Rad}_{e}\left(L_{2}\right)=L_{2}$, a contradiction.

Example 2.11.

(1) Let M be a simple singular module. Then M is δ-local but it is not e-local. For example, $M=\mathbb{Z} / p \mathbb{Z}, \mathrm{p}$ is a prime number. Then M is a \mathbb{Z}-module simple and singular.
(2) Let N be an e-local projective module and K, a non-projective semisimple module. By Theorem 2.9 and [15, Proposition 2.17], $N \oplus K$ is an e-local module but it is not δ-local.
(3) Let $R=\mathbb{Z}, M=\mathbb{Z} / 24 \mathbb{Z}$. Then, $\operatorname{Rad}(M)=\delta(M)=6 M, \operatorname{Rad}_{e}(M)=2 M$. So, M is an e-local module but it is neither local nor δ-local.
(4) Let F be a field and $R=\left(\begin{array}{cc}F & F \\ 0 & F\end{array}\right)$. Then R is δ-local but it is not local ($[15,2.5]$). Moreover, R is an e-local module by projectivity of R.

Proposition 2.12. A module M is e-local if and only if $M=L \oplus N$ such that L is a cyclic e-local module and N is a semisimple module.
Proof. (\Rightarrow). Assume that M is an e-local module. Then $\operatorname{Rad}_{e}(M)$ is a maximal submodule of M. Call $x \in M$ and $x \notin \operatorname{Rad}_{e}(M)$. By maximality of $\operatorname{Rad}_{e}(M)$, then $M=\operatorname{Rad}_{e}(M)+x R$. Furthermore, $\operatorname{Rad}_{e}(M)<_{e} M$, there exists a nonzero semisimple submodule X of M such that $M=X \oplus x R$. It follows that $\operatorname{Rad}_{e}(X)=X$ and so X is not e-local. We deduce that $x R$ is e-local by Theorem 2.9.
(\Leftarrow). By Theorem 2.9.
Theorem 2.13. The following conditions are equivalent for a module M :
(1) M is an e-local module;
(2) $\operatorname{Rad}_{e}(M)$ is a maximal submodule of M and every proper essential submodule of M is contained in a maximal submodule;
(3) M has a unique essential maximal submodule and every proper essential submodule of M is contained in a maximal submodule.

Proof. (1) $\Leftrightarrow(2)$ is clear.
$(1) \Rightarrow(3)$. Since M is e-local, M is not semisimple. Assume that there is a nonzero submodule $X \leq M$ such that $\operatorname{Rad}_{e}(M) \cap X=0$. Since $\operatorname{Rad}_{e}(M)$ is a maximal submodule of $M, M=\operatorname{Rad}_{e}(M) \oplus X$. This gives that X is a simple module. As $\operatorname{Rad}_{e}(M)<_{e} M$, there exists a semisimple submodule $L \leq M$ such that $M=L \oplus X$. We deduce that M is a semisimple module, a contradiction. It follows that $\operatorname{Rad}_{e}(M)$ is essential in M. Now suppose that M contains an essential
maximal submodule N such that $N \not \leq \operatorname{Rad}_{e}(M)$. Then $M=\operatorname{Rad}_{e}(M)+N$. Since $\operatorname{Rad}_{e}(M)<_{e} M$, there exists a semisimple submodule E of M such that $M=E \oplus N$. But N is essential in M, we have $E=0$ and so $N=M$, a contradiction. Consequently, $\operatorname{Rad}_{e}(M)$ is the only essential maximal submodule of M.
$(3) \Rightarrow(1)$. Assume that every proper essential submodule M is contained in a maximal submodule and K is the only essential maximal submodule of M. If $x \in M \backslash K$, then $M=x R+K$ by maximality of K. By our assumption $K \leq^{e} M, x R$ is not e-small in M. This gives that $x \notin \operatorname{Rad}_{e}(M)$. We deduce that $\operatorname{Rad}_{e}(M) \leq K$. Let Y be a proper essential submodule M, then $Y \leq K$ and $Y+K=K \neq M$. It follows that $K \ll_{e} M$, i.e. $K \leq \operatorname{Rad}_{e}(M)$. Thus $\operatorname{Rad}_{e}(M)=K \ll_{e} M$.

Following [12], a module M is called e-supplemented if every submodule of M has an e-supplement in M. A module M is called amply e-supplemented if for any submodules A, B of M with $M=A+B$, there exists an e-supplement P of A such that $P \leq B$. In this case, we say that A has ample e-supplements in M.

Proposition 2.14. Let M be an e-local module. If N is a submodule of M, then N is either e-small in M or there exists a semisimple submodule X of M such that $M=N \oplus X$.
Proof. Let N be a submodule of M. Assume N is not e-small in M. Then $N \not \leq \operatorname{Rad}_{e}(M)$. By maximality of $\operatorname{Rad}_{e}(M)$, we have $N+\operatorname{Rad}_{e}(M)=M$. As $\operatorname{Rad}_{e}(M)<_{e} M, M=N \oplus X$ for some a semisimple submodule X of M.

Lemma 2.15. Let N be a maximal submodule of a module M. If K is an esupplement of N in M, then K is either e-local or semisimple.
Proof. By assumption, we have $N+K=M$ and $N \cap K \ll_{e} K$. Therefore $N \cap K \leq$ $\operatorname{Rad}_{e}(K)$. As $M / N \simeq K /(N \cap K), N \cap K$ is a maximal submodule of K. It follows that $\operatorname{Rad}_{e}(K)=N \cap K$ or $\operatorname{Rad}_{e}(K)=K$. If $\operatorname{Rad}_{e}(K)=N \cap K$, then K is an e-local module. Assume that $\operatorname{Rad}_{e}(K)=K$. For any $x \in K \backslash(N \cap K)$, we have $x R+(N \cap K)=K$. Furthermore, we have $x R<_{e} K$ by Lemma 2.2 and $N \cap K<_{e} K$. Thus $K \ll_{e} K$ by Lemma 2.1. By Lemma 2.4, K is a semisimple module.

Lemma 2.16. Let $L_{1}, L_{2}, . ., L_{n}$ be submodules of M such that either L_{i} is e-local or L_{i} is semisimple. Assume that N is a submodule of M and $N+L_{1}+\ldots+L_{n}$ has an e-supplement K in M. Then, there exists a subset I of $\{1, \ldots, n\}$ such that $K+\sum_{i \in I} X_{i}$ is an e-supplement of N in M, where $X_{i}=L_{i}$ or X_{i} is a semisimple direct summand of L_{i}.
Proof. If $n=1$ then $N+\left(K+L_{1}\right)=M$ and $K \cap\left(N+L_{1}\right)<_{e} K$. Call $H=$ $(N+K) \cap L_{1}$. Assume that $H<_{e} L_{1}$. We have

$$
N \cap\left(K+L_{1}\right) \leq\left[\left(N+L_{1}\right) \cap K\right]+\left[(N+K) \cap L_{1} \lll e K+L_{1}\right]
$$

It follows that $K+L_{1}$ is an e-supplement of N in M.

If $H K_{e} L_{1}$ then L_{1} is not semisimple by Lemma 2.4. By hypothesis, L_{1} is e-local. From Proposition 2.14, there exists a semisimple submodule $X_{1} \leq L_{1}$ such that $H \oplus X_{1}=L_{1}$. Hence $N+\left(K+X_{1}\right)=M$. We have that

$$
\begin{gathered}
N \cap\left(K+X_{1}\right) \leq(N+K) \cap X_{1}+\left(N+X_{1}\right) \cap K, \\
(N+K) \cap X_{1}<_{e} X_{1},\left(N+X_{1}\right) \cap K \leq\left(N+L_{1}\right) \cap K<_{e} K
\end{gathered}
$$

and obtain that $N \cap\left(K+X_{1}\right)<_{e} K+X_{1}$. This gives that $K+X_{1}$ is an e-supplement of N in M.

Assume that $n>1$. By induction on n, there exist a subset \mathcal{I} of $\{2, \ldots, n\}$ and $X_{j} \leq L_{j}, j \in \mathcal{J}$ such that $K+\sum_{j \in \mathcal{J}} X_{j}$ is an e-supplement of $N+L_{1}$ in M, which either $X_{j}=L_{j}$ or X_{j} is a semisimple direct summand of L_{j} for all $j \in \mathcal{J}$. Then, there exists a submodule X_{1} of L_{1} such that $K+\sum_{j \in \mathcal{J}} X_{j}+X_{1}$ is an e-supplement of N in M and either $X_{1}=L_{1}$ or X_{1} is a semisimple direct summand of L_{1}.
Proposition 2.17. Let M be a finitely generated module. The following conditions are equivalent:
(1) M is an amply e-supplemented module;
(2) Every maximal submodue of M has ample e-supplement in M;
(3) If L, N are submodules of M and $M=L+N$ then $M=N+L_{1}+\ldots+L_{n}$, where n is positive integer number, either L_{i} is e-local or L_{i} is semisimple.

Proof. (1) $\Rightarrow(2)$. It is clear.
(2) $\Rightarrow(3)$. Let N, L be submodules of M and $M=N+L$. Call Γ a class of all submodules X of M such that $X \leq L$ and $X=X_{1}+\ldots+X_{k}$, where either X_{i} is e-local or X_{i} is semisimple. Assume that $M \neq N+A$ for all $A \in \Gamma$. By [15, Lemma 3.5], there exists a submodule $U \leq M$ such that $N \leq U$ and U is a maximal submodule of M satisfying $M \neq U+A$ for all $A \in \Gamma$. Since M is finitely generated and $U \neq M$, there exists a maximal submodule $K \leq M$ such that $U \leq K$. So $K+L=M$. By hypothesis, there exists a submodule $E \leq L$ such that E is an e-supplement of K in M. Following Lemma 2.15, either E is e-local or E is semisimple. It is easy to see that $U \neq U+E$. Otherwise, we have $E \leq U \leq K$ and $K=K+E=M$. It follows $M=U+E+F, F \in \Gamma$. So $E+F \in \Gamma$, a contradiction.
$(3) \Rightarrow(1)$. By Lemma 2.16.
Lemma 2.18. Let N, L be submodules of M such that $M=N+L$. If L is an e-supplemented module then L contains an e-supplement of N in M.
Proof. By hypothesis, there exists a submodule K of L such that $(N \cap L)+K=L$ and $(N \cap L) \cap K<_{e} K$. Then $N+K=M$ and $N \cap K<_{e} K$. So K is an e-supplement of N in M.
Proposition 2.19. Let M be a module. If every cyclic submodule of M is esupplemented then every maximal submodule of M has ample e-supplement.

Proof. Assume that N is a maximal submodule of M. Let L be a submodule of M such that $M=N+L$. There exists x in L satifying $x \notin N$ and $x R+N=M$. Following Lemma 2.18, xR containt an e-supplement of N in M.
Corollary 2.20. If M is a finitely generated module and every cyclic submodule of M is e-supplemented then M is an e-supplemented module.
Proof. By Proposition 2.17 and Proposition 2.19.

3. \mathcal{T}-e-noncosingular Modules

Let M, N be right R-modules. We call $M \mathcal{T}$-e-noncosingular relative to N if $\operatorname{Im} f$ is not e-small in N for any nonzero homomorphism $f: M \rightarrow N . M$ is called \mathcal{T} -e-noncosingular if M is \mathcal{T} - e-noncosingular relative to M. The ring R is called right (left) \mathcal{T} - e-noncosingular if the right (left) module $R_{R}\left({ }_{R} R\right)$ is \mathcal{T} - e-noncosingular, respectively.

We denote

$$
\nabla_{e}[M, N]=\left\{f: M \rightarrow N \mid \operatorname{Im} f<_{e} N\right\}
$$

It is easily to check that M is \mathcal{T}-e-noncosingular relative to N if and only if $\nabla_{e}[M, N]=0$.

Proposition 3.1. Let M, N be right R-modules and K is a direct summand of M. If $\nabla_{e}[M, N]=0$ then $\nabla_{e}[K, N]=0$.
Proof. Assume that $M=K \oplus L$ and $\varphi \in \nabla_{e}[K, N]$. Then $\operatorname{Im} \varphi<_{e} N$. We consider the homomorphism $\varphi \oplus 0_{L}: M \rightarrow N$ defined by $\left(\varphi \oplus 0_{L}\right)(k+l)=\varphi(k)$ for all $k \in K, l \in L$. So $\operatorname{Im}\left(\varphi \oplus 0_{L}\right)=\operatorname{Im} \varphi<_{e} N$. As $\nabla_{e}[M, N]=0, \varphi \oplus 0_{K}=0$ and hence $\varphi=0$.
Proposition 3.2. Let M, N be right R-modules. If $\nabla_{e}[M, N]=0$ then $\nabla_{e}[M, P]=$ 0 for all submodule P of N.
Proof. Assume that $P \leq N$ and $\varphi \in \nabla_{e}[M, P]$. Then $\operatorname{Im} \varphi<_{e} P$. It follows that $\operatorname{Im} \varphi<_{e} N$. Since $\nabla_{e}[M, N]=0, \varphi=0$.

Corollary 3.3. Every direct summand of a \mathfrak{T}-e-noncosingular module is also a T-e-noncosingular module.
Proof. It is followed from Proposition 3.1.
Proposition 3.4. Let $M=\oplus_{i \in I} M_{i}, N=\oplus_{j \in J} N_{j}$ be right R-modules, where I, J are non-empty sets. Then $\nabla_{e}[M, N]=0$ if only if $\nabla_{e}\left[M_{i}, N_{j}\right]=0$ for all $i \in I, j \in J$.
Proof. Assume that $\nabla_{e}\left[M_{i}, N_{j}\right]=0$ for all $i \in I, j \in J$. Let $f \in \nabla_{e}\left[M, N_{j}\right]$ and the conlusion $\iota_{i}: M_{i} \rightarrow M$. Since $\operatorname{Im} f<_{e} N_{j}$, $\operatorname{Im} f \iota_{i}<_{e} N_{j}$ for all $i \in I$. Hence $f \iota_{i}=0$ for all $i \in I$. It follows that $f=0$. Now, let $\varphi \in \nabla_{e}[M, N]$ and the projection $\pi_{j}: N \rightarrow N_{j}$. Set $\varphi_{j}=\pi_{j} \varphi: M \rightarrow N_{j}$. Since $\operatorname{Im} \varphi<_{e} N, \operatorname{Im} \varphi_{j}<_{e} N_{j}$ for all $i \in I$. By hypothesis, $\varphi_{j}=0$. It follows that $\varphi=0$.

The converse is followed by Lemma 3.1 and Lemma 3.2.
Corollary 3.5. Let $M=\oplus_{i \in I} M_{i}, N=\oplus_{j \in J} N_{j}$ be right R-modules, where I, J are non-empty sets. Then M is \mathcal{T}-e-noncosingular relative to N if only if M_{i} is \mathcal{T}-e-noncosingular relative to N_{j} for all $i \in I, j \in J$.
Corrllary 3.6. Let $\left(M_{i}\right)_{i \in I}$ be a family of modules. Then $M=\oplus_{i \in I} M_{i}$ is a \mathcal{T}-enoncosingular if and only if M_{i} is \mathcal{T}-e-noncosingular relative to M_{j} for all $i, j \in I$.

Let M be a module. We call M an e-small module if M is e-small in injective envelope of M. We denote

$$
\bar{Z}_{e}(M)=\bigcap\{\operatorname{Ker} g \mid g: M \rightarrow N, N \text { is } e \text {-small module }\} .
$$

If $\bar{Z}_{e}(M)=M$, then M is called an e-noncosingular module.
Proposition 3.7. The following conditions are equivalent for a ring R :
(1) Every right R-module is \mathfrak{T}-e-noncosingular;
(2) Every right R-module is e-noncosingular;
(3) For any right R-module $M, \operatorname{Rad}_{e}(M)=0$.

Proof. (1) $\Rightarrow(2)$. Let $N<_{e} E(N)$. We will prove $N=0$. We consider the homomorphism $f: M \oplus N \rightarrow E(N)$ given by $f(m+n)=n$ for all $m \in M, n \in N$. Then $\operatorname{Im} f=N<_{e} E(N)$. We have that $M \oplus N \oplus E(N)$ is an \mathcal{T} - e-noncosingular module and obtain that $M \oplus N$ is \mathcal{T} - e-noncosingular relative to $E(N)$. This gives $f=0$. It is easily to check that $N=0$. Furthermore, for any R-module M, $\bar{Z}_{e}(M)=\bigcap\{\operatorname{Ker} g \mid g: M \rightarrow 0\}=M$, i.e., M is e-noncosingular.
$(2) \Rightarrow(3)$. Assume that N is an e-small submodule of M. Call $\pi: M \oplus N \rightarrow N$ the projection. By hypothesis, $M \oplus N$ is e-noncosingular. We have that $\bar{Z}_{e}(M \oplus$ $N)=M \oplus N$ and obtain that $f=0$. Thus $N=0$.
$(3) \Rightarrow(1)$. It is clear.
Now, we denote:

$$
Z_{e-M}(N)=\bigcap_{\varphi \in \nabla_{e}[M, N]} \operatorname{Ker} \varphi
$$

Proposition 3.8. Let M be a module. Then the following conditions hold:
(1) $\bar{Z}_{e}(M) \leq Z_{e-M}(N)$.
(2) $Z_{e-M}(N)$ is a fully invariant submodule of M.
(3) $\nabla_{e}[M, N]=0$ if only if $M=Z_{e-M}(N)$.
(4) If $M=\oplus_{i \in I} M_{i}$ then $\bar{Z}_{e-M}(N) \leq \oplus_{i \in I} \bar{Z}_{e-M_{i}}(N)$.

Proof. (1) By definition, we get

$$
\bar{Z}_{e}(M) \leq \bigcap\left\{\operatorname{Ker} g: M \rightarrow N \mid N=\operatorname{Im} f, f \in \nabla_{e}[M, N]\right\}=Z_{e-M}(N) .
$$

(2) Assume $f \in \operatorname{End}(M)$ and $\varphi \in \operatorname{Hom}(M, N)$ such that $\operatorname{Im} \varphi<_{e} N$. Therefore $\operatorname{Im} \varphi f \leq \operatorname{Im} \varphi$. So $\operatorname{Im} \varphi f<_{e} N$. For all $x \in Z_{e-M}(N), \varphi(x)=0$ implies $\varphi f(x)=0$. Thus $f(x) \in Z_{e-M}(N)$, i.e., $Z_{e-M}(N)$ is fully invariant.
(3) It is clear.
(4) As $Z_{e-M}(N)$ is fully invariant, $Z_{e-M}(N)=\oplus_{i \in I}\left(Z_{e-M}(N) \cap M_{i}\right)$. We will prove that $Z_{e-M}(N) \cap M_{i} \subset Z_{e-M_{i}}(N)$. Let $x_{i} \in Z_{e-M}(N) \cap M_{i}$ and $\varphi_{i}: M_{i} \rightarrow N$ such that $\operatorname{Im} \varphi_{i}<_{e} N$. Then $\psi_{i}: M \rightarrow M$ extends $\varphi_{i}\left(\left.\psi_{i}\right|_{M_{j}}=0\right.$ for all $\left.j \neq i\right)$. This gives $\operatorname{Im} \psi_{i}<_{e} N$. Thus $\psi_{i}\left(x_{i}\right)=\varphi_{i}\left(x_{i}\right)=0$ and hence $x_{i} \in Z_{e-M_{i}}(N)$.

Corollary 3.9. Let M and N be modules. Then M is \mathfrak{T}-e-noncosingular relative to N if and only if $Z_{e-M}(N)=M$.

Remark 3.10. It is clearly to see that $Z_{e-M}(M) \leq \bar{Z}_{\mathcal{T}}(M)=\bigcap\{\operatorname{Ker} \varphi \mid \varphi \in$ $\operatorname{End}(M), \operatorname{Im} \varphi \ll M\}$. So, if M is a \mathfrak{T} - e-noncosingular then M is a \mathfrak{T}-noncosingular module. The converse is not true in general.

Example 3.11.

(1) \mathbb{Z}-module \mathbb{Z} is \mathcal{T}-e-noncosingular.
(2) If $M_{\mathbb{Z}}=\mathbb{Z}_{6}$ then $\operatorname{Rad}(M)=0$ and $Z_{e-M}(M)=0$. It follows that M is \mathcal{T}-noncosingular but not \mathcal{T}-e-noncosingular.
(3) Let R be a proper Dedekind domain and P be a nonzero prime ideal of R. Consider module $M=R\left(P^{\infty}\right) \oplus R / P$. Then M is not a \mathcal{T}-noncosingular module (see Example 2.12, [9]). So M is not a \mathcal{T}-e-noncosingular module.
(4) As $\operatorname{Hom}_{\mathbb{Z}}\left(\mathbb{Q}, \mathbb{Z}_{2}\right)=\operatorname{Hom}_{\mathbb{Z}}\left(\mathbb{Z}_{2}, \mathbb{Q}\right)=0, \mathbb{Q}_{\mathbb{Z}}$ is \mathcal{T} - e-noncosingular relative to \mathbb{Z}_{2} and \mathbb{Z}_{2} is \mathcal{T}-e-noncosingular relative to \mathbb{Q}. Hence $\left(\mathbb{Q} \oplus \mathbb{Z}_{2}\right)_{\mathbb{Z}}$ is \mathcal{T}-enoncosingular by Lemma 3.6.

Proposition 3.12. Let M be an R-module which $S=\operatorname{End}(M)$ is Von Neumann regular and $T(M)=\left\{N \leq M \mid \operatorname{Rad}_{e}(N)=N\right\}$. If $T(M)=0$ then M is \mathcal{T}-enoncosingular.
Proof. Let $f \in \operatorname{End}(M)$ such that $\operatorname{Im} f \lll \ll$. Then $\operatorname{Im} f \leq \operatorname{Rad}_{e}(M)$. Since S is regular, there exists $g \in S$ such that $f=f g f$. Hence $f g$ is an idempotent and $M=\operatorname{Im} f g \oplus \operatorname{Ker} f g$. Since $\operatorname{Im} f g \leq \operatorname{Im} f \leq \operatorname{Rad}_{e}(M)$, $\operatorname{Rad}_{e}(M)=\operatorname{Rad}_{e}(\operatorname{Im} f g) \oplus \operatorname{Rad}_{e}(\operatorname{Ker} f g)$. So, $\operatorname{Im} f g \cap \operatorname{Rad}_{e}(M)=\operatorname{Im} f g=$ $\operatorname{Rad}_{e}(\operatorname{Im} f g) \oplus\left(\operatorname{Im} f g \cap \operatorname{Rad}_{e}(\operatorname{Ker} f g)\right)$. It follows $\operatorname{Im} f g=\operatorname{Rad}_{e}(\operatorname{Im} f g)$. Therefore $\operatorname{Im} f g \in T(M)$. We have $f g=0$ and $f=0$.

Note that if $\operatorname{Rad}_{e}(M)=0$ then M is a \mathcal{T} - e-noncosingular module. But the converse is not true in general. For example, let \mathbb{Z}-module $M=\mathbb{Q} \oplus \mathbb{Z}_{2}$ in Example 3.11. Then M is \mathcal{T} - e-noncosingular. However, we have

$$
\operatorname{Rad}_{e}\left(\mathbb{Q} \oplus \mathbb{Z}_{2}\right)=\operatorname{Rad}_{e}(\mathbb{Q}) \oplus \operatorname{Rad}_{e}\left(\mathbb{Z}_{2}\right)=0 \oplus \mathbb{Z}_{2} \neq 0
$$

Proposition 3.13. Let $M=x R$ be a cyclic module such that $r(x)$ is an ideal of R. Then M is \mathcal{T}-e-noncosingular if and only if $\operatorname{Rad}_{e}(M)=0$.

Proof. Assume that M is \mathcal{T} - e-noncosingular and $\operatorname{Rad}_{e}(M) \neq 0$. There exists $a \in R$ such that $x a \neq 0$ and $x a \in \operatorname{Rad}_{e}(M)$. Call f an endomorphism of M with $f(x r)=$
 contradiction. The converse is clear.

Corollary 3.14. A ring R is right \mathcal{T} - e-noncosingular if and only if $\operatorname{Rad}_{e}\left(R_{R}\right)=0$.

Example 3.15.

(1) Consider \mathbb{Z}_{6} as a ring. We have $J\left(\mathbb{Z}_{6}\right)=0, \operatorname{Rad}_{e}\left(\mathbb{Z}_{6}\right)=\mathbb{Z}_{6}$. So \mathbb{Z}_{6} is \mathcal{T} noncosingular but is not \mathcal{T} - e-noncosingular.
(2) Let R be a discrete valuation ring with maximal ideal m. Then R is not \mathcal{T}-noncosingular following Example 4.7,[14]. So R is not \mathcal{T}-e-noncosingular.

For $N \leq M, I \leq S=\operatorname{End}(M)$, denote $N \unlhd M$ means that N is a fully invariant submodule of M and $E_{M}(I)=\sum_{\phi \in I} \operatorname{Im} \phi ; D_{S}(N)=\{\phi \mid \operatorname{Im} \phi \leq N\}$.

Lemma 3.16. Let $N \leq M, I \leq S, P \unlhd M, L \unlhd S$. Then:
(1) $E_{M}\left(D_{S}\left(E_{M}(I)\right)\right)=E_{M}(I)$;
(2) $D_{S}\left(E_{M}\left(D_{S}(N)\right)\right)=D_{S}(N)$;
(3) $E_{M}(L) \unlhd M$;
(4) $D_{S}(P) \unlhd S$.

Proof. (1) $E_{M}\left(D_{S}\left(E_{M}(I)\right)\right)=\sum_{\phi \in D_{S}\left(E_{M}(I)\right)} \operatorname{Im} \phi \leq E_{M}(I)$. Conversely, for all $\varphi \in I, \operatorname{Im} \varphi \leq E_{I}(M)$. So $\varphi \in D_{S}\left(E_{M}(I)\right)=\left\{\phi \mid \operatorname{Im} \phi \leq E_{M}(I)\right\}$.
(2) $E_{M}\left(D_{S}(N)\right) \leq N$ implies $D_{S}\left(E_{M}\left(D_{S}(N)\right)\right) \leq D_{S}(N)$. Conversely, for all $\varphi, \operatorname{Im} \varphi \leq N, \operatorname{Im} \varphi \leq \sum_{\operatorname{Im} \phi \leq N} \operatorname{Im} \phi=E_{M}\left(D_{S}(N)\right)$. So $D_{S}(N) \leq D_{S}\left(E_{M}\left(D_{S}(N)\right)\right)$.
(3) Let $f: M \rightarrow M, \bar{f}\left(E_{M}(L)\right)=\sum_{\phi \in L} f(\operatorname{Im} \phi)=\sum_{\phi \in L} \operatorname{Im} \phi f$. Since $L \unlhd S, \phi f \in L$. So $\sum_{\phi \in L} \operatorname{Im} \phi f \leq \sum_{\psi \in L} \operatorname{Im} \psi=E_{M}(L)$.
(4) For all $\psi \in S, \phi \in D_{S}(P)$. We have $\psi \phi(M) \leq \psi(P) \leq P$ and $\phi \psi(M) \leq$ $\phi(M) \leq P$. So $\psi \phi \in D_{S}(P)$ and $\phi \psi \in D_{S}(P)$.

Proposition 3.17. Let M be an R-module. M is \mathcal{T}-e-noncosingular if and only if for all $I \leq S, E_{M}(I)=e M \oplus L$, in which $L<_{e} M, e^{2}=e \in S$ implies $I \cap(1-e) S=$ 0.

Proof. (\Rightarrow). Assume $I \leq S, E_{M}(I)=e M \oplus L$, in which $L \ll_{e} M, e^{2}=e \in S$. We have $E_{M}(I \cap(1-e) S) \leq E_{M}(I) \cap E_{M}(1-e) S \leq E_{M}(I) \cap(1-e) M=(e M \oplus L) \cap(1-$ $e) M \leq(1-e) L$. Since $L<_{e} M,(1-e) L<_{e} M$. Hence $E_{M}(I \cap(1-e) S)<_{e} M$. M is \mathcal{T} - e-noncosingular, so $I \cap(1-e) S=0$.
(\Leftarrow). Let $\phi \in S, \operatorname{Im} \phi<_{e} M$. We have $E_{M}(\phi S)=\sum_{\psi \in S} \operatorname{Im} \phi \psi=\phi\left(\sum_{\psi \in S} \operatorname{Im} \psi\right)=$ $\phi(M)<_{e} M$. By hypothesis, $I \cap S=0$. Hence $I=0$, i.e., $\phi=0$.
Corollary 3.18. M is a \mathcal{T}-e-noncosingular module if and only if for all $I \leq$ $S, E_{M}(I)<_{e} M$ implies that $I=0$.

Now, we call M an $e-\mathcal{K}$ - module if for all $N \leq M, D_{S}(N)=0$ implies $N<_{e} M$.

Proposition 3.19. M is an e-K-module if and only if, for all $N \leq M, E_{M}\left(D_{S}(N)\right)$ is a direct summand of M implies that $N=E_{M}\left(D_{S}(N)\right) \oplus L$ with $L<_{e} M$.
Proof. Assume that $N \leq M$ and $E_{M}\left(D_{S}(N)\right) \leq{ }^{\oplus} M$. Then $E_{M}\left(D_{S}(N)\right)=$ $e M, e^{2}=e \in S$. Clearly, $e M=E_{M}\left(D_{S}(N)\right) \leq N$. On the other hand, $D_{S}(e M) \cap$ $D_{S}((1-e) M \cap N)=0$ and $D_{S}((1-e) M \cap N) \leq D_{S}(N)=D_{S}(e M)$. Hence $D_{S}((1-e) M \cap N)=0$. Since M is an $e-\mathcal{K}$-module, we have $(1-e) M \cap N \lll<$. Thus $N=E_{M}\left(D_{S}(N)\right) \oplus((1-e) M \cap N)$ and $(1-e) M \cap N<_{e} M$.

Conversely, assume $N \leq M$ and $D_{S}(N)=0$. Then $E_{M}\left(D_{S}(N)\right)=0$. By hypothesis, $N=E_{M}\left(D_{S}(N)\right) \oplus L$ with $L<_{e} M$. Thus $N=L<_{e} M$.

Recalled that a module M is e-lifting if for all submodule N of M, there exists decompsiton $M=A \oplus B$ such that $A \leq N$ and $N \cap B<_{e} B$ ([12]). A module M is called dual Baer if for all $N \leq M$, there exists an idempotent $e \in S=\operatorname{End}(M)$ such that $D_{S}(N)=e S([8])$.

Lemma 3.20. A dual Baer e-K-module is e-lifting.
Proof. Assume M is a dual Baer and e - \mathcal{K}-module. Let N be a submodule of M. There exists an idempotent $e \in S=\operatorname{End}(M)$ such that $D_{S}(N)=e S$. We have $e M=E_{M}(e S) \leq N$. Hence $N=e M \oplus((1-e) M \cap N)$. For all $\phi \in D_{S}((1-e) M \cap N)$, $\operatorname{Im} \phi \leq N$. It follows $\phi \in D_{S}(N)=e S$. Since $\phi(M) \leq(1-e) M \cap e M=0$, then $\phi=0$, i.e., $D_{S}((1-e) M \cap N)=0$. Since M is an $e-\mathcal{K}$-module, $(1-e) M \cap N<_{e} M$. Thus M is e-lifting.
Theorem 3.21. A \mathcal{T}-e-noncosingular e-lifting module is dual Baer.
Proof. Assume that M is a \mathcal{T} - e-noncosingular e-lifting module and $N \leq M$. Then $N=e M \oplus B$ which $e^{2}=E \in S, B=(1-e) M \cap N<_{e} M$. Hence $e S \leq D_{S}(e M) \leq$ $D_{S}(N)$. If there exists $\phi \in D_{S}(N) \backslash e S$, then $(1-e) \phi=e S \cap D_{S}(N)$. We obtain that $(1-e) \phi M \leq N$ and $(1-e) \phi M \leq(1-e) M$. So $(1-e) \phi M \leq N \cap(1-e) M=B<_{e} M$.

Since M is \mathcal{T} - e-noncosingular, which follows $(1-e) \phi=0$, i.e., $\phi=e \phi \in e S$. This is a contradition. Thus $D_{S}(N)=e S$, i.e., M is dual Baer.

Lemma 3.22. Let M be a \mathcal{T}-e-noncosingular module and X, a fully invariant submodule of M and $X=N \oplus B$ with $B<_{e} M$. If N is a direct summand of M then N is a fully invariant submodule of M.
Proof. Assume $M=N \oplus P$ and $\phi \in \operatorname{End}(M)$. Set $\psi=\left.\pi_{P} \phi\right|_{N} \pi_{N}$. If there exists $x \in N$ such that $\phi(x) \notin N$, then $\psi(x) \neq 0$. Since X is a fully invariant submodule of $M, \phi(N) \leq \phi(X) \leq X$. So

$$
\phi(M)=\left.\pi_{P} \phi\right|_{N} \pi_{N}(M)=\left.\pi_{P} \phi\right|_{N}(N) \leq \pi_{P}(X)=X \cap P
$$

Then $X \cap P \cong B$. It follows $X \cap P<_{e} M$. As M is \mathcal{T} - e-noncosingular, $\psi=0$, a contradiction. Thus $\phi(N) \leq N$.
Proposition 3.23. Let M be a \mathcal{T}-e-noncosingular module. The following conditions are equivalent:
(1) For every fully invariant submodule N of M, there exists a direct summand B of M such that $N / B<_{e} M / B$;
(2) For every fully invariant submodule N of M, there exists a fully invariant direct summand B of M such that $N / B<_{e} M / B$.

Proof. (2) $\Rightarrow(1)$ is clear. It suffices to prove (1) $\Rightarrow(2)$. Assume $X \unlhd M$. By (1), we have $X=N \oplus B, B<_{e} M$ and N is a direct summand of M. By Lemma 3.22, N is a fully invariant submodule of M. Thus (2) holds.

Acknowledgments. The authors would like to thank the referee for the very helpful comments and suggestions.

References

[1] I. Al-Khazzi and P. F. Smith, Modules with chain conditions on superfluous submodules, Comm. Algebra, 19(8)(1991), 2331-2351.
[2] F. W. Anderson, K. R. Fuller, Rings and Categories of Modules, Springer -Verlag New York, 1974.
[3] P. Aydogdu, Rings over which every module has a flat δ-cover, Turkish J. Math., 37(2013), 182-194.
[4] E. Büyükaşik and C. Lomp, When δ-semiperfect rings are semiperfect, Turkish J. Math., 34(2010), 317-324.
[5] N. Er, E. Nil Orhan, Lifting modules with indecomposable decompositions, Comm. Algebra, 36(2)(2008), 395-404.
[6] R. E. Jonhson, Structure theory of faithful rings, Trans. Amer. Math. Soc., 84(1957), 508-522.
[7] M. T. Kosan, δ-lifting and δ-supplemented modules, Algebra Colloq., 14(1)(2007), 53-60.
[8] D. Keskin Tütüncü and R. Tribak, On dual Baer modules, Glassgow Math. J., 52(2010), 261-269.
[9] D. Keskin Tütüncü and R. Tribak, On \mathcal{T}-noncosingular modules, Bull. Aust. Math. Soc., 80(2009), 462-471.
[10] A. C. Özcan, The torsion theory cogenerated by δ-M-small modules and GCO-modules, Comm. Algebra, 35(2007), 623-633.
[11] T.C. Quynh, On pseudo semi-projective modules, Turkish J. Math., 37(1)(2013), 27-36.
[12] T. C. Quynh and P. H. Tin, Somes Properties of e-supplemented and e-lifting modules, Vietnam J. Math., 41(3)(2013), 303-312.
[13] Y. Talebi and N. Vanaja, The torsion theory cogenerated by M-small modules, Comm. Algebra, 30(3)(2002), 1449-1460.
[14] R. Tribak, Some results on T-noncosingular modules, Turkish J. Math., 38(2014), 29-39.
[15] R. Tribak, On δ-local modules and amply δ-supplemented modules, J. Algebra Appl., 12(2)(2013), 1250144, 14 pp.
[16] Y. Wang, δ-small submodules and δ-supplemented Modules, Int. J. Math. Math. Sci. (2007), 58-132
[17] R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach, Reading 1991.
[18] M. Yousif and Y. Zhou, Semiregular, Semiperfect and perfect rings relative to an ideal, Rocky Mountain J. Math., 32(4)(2002) 1651-1671.
[19] Y. Zhou, Generalizations of perfect, semiperfect, and semiregular rings, Algebra Colloq., $\mathbf{7}$ (2000), 305-318.
[20] D. X. Zhou, X. R. Zhang, Small-essential submodules and Morita duality, Southeast Asian Bull. Math., 35(2011), 1051-1062.

[^0]: * Corresponding Author.

 Received March 12, 2015; accepted May 11, 2016.
 2010 Mathematics Subject Classification: 16D10, 16D40, 16D60, 16D70.
 Key words and phrases: e-local module; e-noncosingular module; \mathcal{T} - e-noncosingular module.
 This work was supported by National Foundation for Science and Technology Development of Vietnam and Vietnam Institute for Advanced Study in Mathematics.

