• Title/Summary/Keyword: mathematics gifted education

Search Result 375, Processing Time 0.021 seconds

Analysis of Representations in the Problem-Solving Process: The ACODESA (Collaborative Learning, Scientific Debate and Self Reflection) Method (ACODESA(Collaborative Learning, Scientific Debate and Self Reflection) 방법을 적용한 문제해결 과정에서 나타난 표상의 분석)

  • Kang, Young Ran;Cho, Cheong Soo
    • Education of Primary School Mathematics
    • /
    • v.18 no.3
    • /
    • pp.203-216
    • /
    • 2015
  • This study analyzed changes of representations which had come up in the problem-solving process of math-gifted 6th grade students that ACODESA had been applied. The class was designed on a ACODESA procedure that enhancing the use of varied representations, and conducted for 40minutes, 4 times over the period. The recorded videos and interviews with the students were transcribed for analysing data. According to the result of the analysis, which adopted Despina's using type of representation, there appeared types of 'adding', 'elaborating', and 'reducing'. This study found that there is need for a class design that can make personal representations into that of public through small group discussions and confirmation in the problem-solving process.

A study on teaching the system of numbers considering mathematical connections (수학적 연결성을 고려한 수 체계의 지도에 관한 연구)

  • Chung, Young-Woo;Kim, Boo-Yoon;Pyo, Sung-Soo
    • Communications of Mathematical Education
    • /
    • v.25 no.2
    • /
    • pp.473-495
    • /
    • 2011
  • Across the secondary school, students deal with the algebraic conditions like as identity, inverse, commutative law, associative law and distributive law. The algebraic structures, group, ring and field, are determined by these algebraic conditions. But the conditioning of these algebraic structures are not mentioned at all, as well as the meaning of the algebraic structures. Thus, students is likely to be considered the algebraic conditions as productions from the number sets. In this study, we systematize didactically the meanings of algebraic conditions and algebraic structures, considering connections between the number systems and the solutions of the equation. Didactically systematizing is to construct the model for student's natural mental activity, that is, to construct the stream of experience through which students are considered mathematical concepts as productions from necessities and high probability. For this purpose, we develop the program for the gifted, which its objective is to teach the meanings of the number system and to grasp the algebraic structure conceptually that is guaranteed to solve equations. And we verify the effectiveness of this developed program using didactical experiment. Moreover, the program can be used in ordinary students by replacement the term 'algebraic structure' with the term such as identity, inverse, commutative law, associative law and distributive law, to teach their meaning.

An Analysis on the Responses and the Behavioral Characteristics between Mathematically Promising Students and Normal Students in Solving Open-ended Mathematical Problems (수학 영재교육 대상 학생과 일반 학생의 개방형 문제해결 전략 및 행동 특성 분석)

  • Kim, Eun-Hye;Park, Man-Goo
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.15 no.1
    • /
    • pp.19-38
    • /
    • 2011
  • The purpose of this study was to analyze the responses and the behavioral characteristics between mathematically promising students and normal students in solving open-ended problems. For this study, 55 mathematically promising students were selected from the Science Education Institute for the Gifted at Seoul National University of Education as well as 100 normal students from three 6th grade classes of a regular elementary school. The students were given 50 minutes to complete a written test consisting of five open-ended problems. A post-test interview was also conducted and added to the results of the written test. The conclusions of this study were summarized as follows: First, analysis and grouping problems are the most suitable in an open-ended problem study to stimulate the creativity of mathematically promising students. Second, open-ended problems are helpful for mathematically promising students' generative learning. The mathematically promising students had a tendency to find a variety of creative methods when solving open-ended problems. Third, mathematically promising students need to improve their ability to make-up new conditions and change the conditions to solve the problems. Fourth, various topics and subjects can be integrated into the classes for mathematically promising students. Fifth, the quality of students' former education and its effect on their ability to solve open-ended problems must be taken into consideration. Finally, a creative thinking class can be introduce to the general class. A number of normal students had creativity score similar to those of the mathematically promising students, suggesting that the introduction of a more challenging mathematics curriculum similar to that of the mathematically promising students into the general curriculum may be needed and possible.

  • PDF

Gifted Middle School Students' Genetic Decomposition of Congruent Transformation in Dynamic Geometry Environments (역동적 기하 환경에서 중등 영재학생들의 합동변환 활동에 대한 발생적 분해)

  • Yang, Eun Kyung;Shin, Jaehong
    • Journal of Educational Research in Mathematics
    • /
    • v.25 no.4
    • /
    • pp.499-524
    • /
    • 2015
  • In the present study, we propose four participating $8^{th}$ grade students' genetic decomposition of congruent transformation and investigate the role of their dragging activities while understanding the concept of congruent transformation in GSP(Geometer's Sketchpad). The students began to use two major schema, 'single-point movement' and 'identification of transformation' simultaneously in their transformation activities, but they were inclined to rely on the single-point movement schema when dealing with relatively difficult tasks. Through dragging activities, they could expand the domain and range of transformation to every point on a plane, not confined to relevant geometric figures. Dragging activities also helped the students recognize the role of a vector, a center of rotation, and an axis of symmetry.

A study about the Leikin's method of measuring mathematical creativity (Leikin의 수학적 창의성 측정 방법에 대한 고찰)

  • Ha, Su Hyun;Lee, Kwangho
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.18 no.1
    • /
    • pp.83-103
    • /
    • 2014
  • The purpose of this paper is to find a method of measuring mathematical creativity reasonably. In the pursuit of this purpose, we designed four multiple solution tasks that consist of two kinds of open tasks; 'tasks with open solutions' and 'tasks with open answers'. We collected data by conducting an interview with a gifted fifth grade student using the four multiple solution tasks we designed and analyzed mathematical creativity of the student using Leikin's model(2009). Research results show that the mathematical creativity scores of two students who suggest the same solutions in a different order may vary. The more solutions a student suggests, the better score he/she gets. And fluency has a stronger influence on mathematical creativity than flexibility or originality of an idea. Leikin's model does not consider the usefulness nor the elaboration of an idea. Leikin's model is very dependent on the tasks and the mathematical creativity score also varies with each marker.

  • PDF

A Study on Generalized Fibonacci Sequence (피보나치 수열의 일반화에 관한 고찰)

  • Yang, Young-Oh;Kim, Tae-Ho
    • Journal for History of Mathematics
    • /
    • v.21 no.4
    • /
    • pp.87-104
    • /
    • 2008
  • In this paper we investigate several properties and characteristics of the generalized Fibonacci sequence $\{g_n\}$={a, b, a+b, a+2b, 2a+3b, 3a+5b,...}. This concept is a generalization of the famous Fibonacci sequence. In particular we find the identities of sums and the nth term $g_n$ in detail. Also we find the generalizations of the Catalan's identity and A. Tagiuri's identity about the Fibonacci sequence, and investigate the relation between $g_n$ and Pascal's triangle, and how fast $g_n$ increases. Furthermore, we show that $g_n$ and $g_{n+1}$ are relatively prime if a b are relatively prime, and that the sequence $\{\frac{g_{n+1}}{g_n}\}$ of the ratios of consecutive terms converges to the golden ratio $\frac{1+\sqrt5}2$.

  • PDF

How to Pose an Open Problem? : Two Cases of Posing an Open-ended Problem by Reorganizing Given Closed Problems (개방형 문제를 어떻게 만들 것인가?: 두 개의 개방형 문제 제작 사례를 중심으로)

  • Do, Jong-Hoon
    • Journal of the Korean School Mathematics Society
    • /
    • v.10 no.2
    • /
    • pp.221-235
    • /
    • 2007
  • Open problems can provide experiences for students to yield originative and various products in their level, because it is open with respect to its departure situation, goal situation, or solving method. Teachers need to pose and utilize open problems in forms of solution-finding or proving problems. For this we first have to specify which resource and method to use by concrete examples. In this article, we exemplify a method and procedure of posing an open problem by the two cases in which we pose open problems by reorganizing given closed problems. And we analyze students' responses for the two posed open problems. On the basis of these, we reflect implications for mathematical education of open problems.

  • PDF

Comparisons positive psychology experience of high school students using PPE-M (PPE-M을 이용한 고등학생들의 긍정심리체험 비교)

  • Hong, Jin Kon;Kim, Tae Kuk
    • Communications of Mathematical Education
    • /
    • v.27 no.2
    • /
    • pp.135-163
    • /
    • 2013
  • This study dealt with the measurements of the positive psychological experience of high school students in relation to mathematics learning by using PPE-M. The purpose of this study is to compare the positive psychology of the high school students based on the grade and gender variables. Measured data for the purpose of this study examined the difference between the gifted students and the general students through a t-test. In addition, differences were analyzed by grade and gender variables. And One-way ANOVA was conducted to see the difference according to the course variables. The difference between the two groups was meaningful in PPE-M total score. There was meaningful difference in all of 5 areas and 19 factors except for 4 factors (Insight, Honesty, Full with pride, and Achievement). However, there was no difference according to grade levels. The comparison between the gender in the ordinary students shows meaningful difference in 11 factors, not in 12 (Judgment, Insight, Honesty, Prudence, Modesty & Kindness, Gratitude & Happiness, Flow, Superiority feeling, Achievement, High pleasure, Full with pride, and Self-efficacy). Affiliation makes meaningful difference in 22 factors except for Honesty.

Exploring Science Classes and Science Teachers of New York Using Professional Teaching Standards by Korean Teachers

  • Yu, Eun-Jeong;Kim, Kahye;Kim, Myong-Hi
    • Journal of the Korean earth science society
    • /
    • v.34 no.5
    • /
    • pp.435-449
    • /
    • 2013
  • The purpose of this study was to investigate the difference of teachers' interaction with their students when teaching science in New York (NY) and in Korea. As part of the 2011 Korean International Teacher Fellows (KITF), supported by the Ministry of Education, Science and Technology (MEST) and the National Institute for International Education Development (NIIED), Korean science teachers observed, for six months, New York's science classes in terms of how teachers interact with their students and how students learn science during science instruction. The participants were 10 science teachers in five middle and high schools that taught Physics, Chemistry, Biology, Earth Science, and Environment Science in NY. The National Board for Professional Teaching Standards (NBPTS, 2003) and Instruction as Interaction (Cohen et al., 2003) were used as an instrument to identify each teacher's teaching and classroom interaction. Several characteristics of science classes in NY were revealed, which are different from Korean science classes. First, science teachers in NY dominantly put more focus on their subject of teaching during science interaction while, Korean science teachers not only teach science but also do counseling to students as a homeroom teacher. Second, science teachers in NY acknowledged the students' individuality and have positive experiences of professional development supported by their school and district more than Korean science teachers do. Third, science teachers in NY sometimes showed limited knowledge about the concepts of science and lack of collaboration with other science teachers. This characteristics may prevent the school from strengthening its subject program and keeping equity across the grade levels and courses.

국제 수학 올림피아드 참가 후보자들을 위한 상황대처훈련에 관한연구

  • 김보경;조성희;이군현
    • Proceedings of the Korean Society for the Gifted Conference
    • /
    • 1994.08a
    • /
    • pp.1.2-37
    • /
    • 1994
  • Currently Korea encourages gifted high schoolers and junior high schoolers to participate in international achievement contests such as International Olympiads. Participants for these contests are selected nationwide among gifted students in areas of mathematics, physics, chemistry, and others. They go through a series of screening tests and programs. One of the screening processes IS Korean Olympiad School, which provides study programs each summer for student-candidates prior to following year's International Olympiads. Approximately 40 students of high schools and junior high schools, in each subject of study, gather at Korean Olympiad Summer School, and they go through intensive study programs during a short period of time. Out of 40 candidates,' less than 10 students are finally selected to participate in International Olympiads. In this study, a psycho-educational program called "Situation Coping Training Program" was developed to enhance ahievement motivation for these student-candidates. This study was to see if this training program actually improved their cognitive, emotive motivation factors, and to see how this training program affected their achievement level. Training was administered for five days. This training program was found effective for participants to increase self-efficacy, internal locus of control, and anxiety copmg. These cognitive and emotive motivation factors, other than intelligence, were found to have positive relationship with achievement level, of which self-efficacy and attribution style of students were found as two best predictors of achievement. This training program was perceived as necessary. by participants, and helpful for recovering self-confidence and self-control as well as coping pressure. Suggestions were made that this kind of training program be administered as a regular curriculum in preparative study programs such as Korean Olympiads, since cognitive, emotive motivation factors are related with achievement, and furthermore, be utilized in all gifted education programs in Korea. in Korea.

  • PDF