• 제목/요약/키워드: mathematically thinking

검색결과 85건 처리시간 0.018초

중심사영과 투시도의 작도 학습에서 나타나는 중학교 수학영재들의 수학적 사고특성과 교사의 역할 (A Study of Mathematically Gifted Middle School Students' of Mathematical Thinking and the Teacher's Role in Teaching and Learning about the Central Projection and Perspective Drawing)

  • 류희찬;강경민
    • 대한수학교육학회지:학교수학
    • /
    • 제15권4호
    • /
    • pp.921-940
    • /
    • 2013
  • 본 연구는 Cabri 3D와 GSP를 이용하여 중심사영에 대한 탐구학습에서 나타나는 중학교 수학영재들의 수학적 사고특성과 교사의 역할을 분석하여 수학영재를 위한 교수 학습 자료의 개발에 시사점을 주는데 목적이 있다. 연구결과 중학교 수학영재들은 중심사영에 의한 도형의 변환을 탐구하고 이를 투시도의 작도를 통해 확인하는 과정에서 다양한 수학적 사고특성을 보였고, 교사는 학생들의 탐구문제해결을 위한 사고의 촉진과 새로운 지식의 형성을 도우면서 수업설계자, 학습촉진자, 기술적 보조자, 상담자의 역할을 하는 것으로 나타났다.

  • PDF

융합 수업 프로그램에서 나타나는 초등 수학 영재들의 수학적 창의성과 컴퓨팅 사고 분석 (An Analysis on the Mathematical Creativity and Computational Thinking of Elementary School Mathematical Gifted Students in the Convergence Class Programs)

  • 강주영;김동화;서혜애
    • East Asian mathematical journal
    • /
    • 제38권4호
    • /
    • pp.463-496
    • /
    • 2022
  • The purpose of this study is to analyze the mathematical creativity and computational thinking of mathematically gifted elementary students through a convergence class using programming and to identify what it means to provide the convergence class using Python for the mathematical creativity and computational thinking of mathematically gifted elementary students. To this end, the content of the nine sessions of the Python-applied convergence programs were developed, exploratory and heuristic case study was conducted to observe and analyze the mathematical creativity and computational thinking of mathematically gifted elementary students. The subject of this study was a single group of sixteen students from the mathematics and science gifted class, and the content of the nine sessions of the Python convergence class was recorded on their tablets. Additional data was collected through audio recording, observation. In fact, in order to solve a given problem creatively, students not only naturally organized and formalized existing mathematical concepts, mathematical symbols, and programming instructions, but also showed divergent thinking to solve problems flexibly from various perspectives. In addition, students experienced abstraction, iterative thinking, and critical thinking through activities to remove unnecessary elements, extract key elements, analyze mathematical concepts, and decompose problems into small components, and math gifted students showed a sense of achievement and challenge.

수학영재학급 학생들과 일반학급 학생들의 통계적 사고 수준 비교 연구: 변이성 모델링과 표집분포 이해 능력 중심으로 (A Comparison of Mathematically Talented Students and Non-Talented Students' Level of Statistical Thinking: Statistical Modeling and Sampling Distribution Understanding)

  • 고은성
    • 영재교육연구
    • /
    • 제22권3호
    • /
    • pp.503-525
    • /
    • 2012
  • 본 연구에서는 통계적 모델링과 표집분포 이해 능력을 중심으로 수학영재학생들과 일반학생 들의 통계적 사고 수준을 비교한다. 연구결과 통계적 모델링에 대한 사고 수준에서 초등학교 수학영재학생들과 일반학생들, 그리고 중학교 수학영재학생들과 일반학생들 사이에 통계적으로 유의한 차이가 있는 것으로 나타났다. 그리고 표집분포의 이해에 대한 사고 수준에서 초등학교 수학영재학생들과 일반학생들 사이에서 통계적으로 유의한 차이가 있는 것으로 나타난 반면, 중학교 수학영재학생들과 일반학생들 사이에서는 통계적으로 유의한 차이가 나타나지 않았다. 그러나 수준별 빈도를 조사한 결과 수학영재학생들의 사고 수준이 상위 수준에 집약되어 분포하기보다는 일반학생들의 사고 수준이 상당부분 중첩되어 있는 것으로 나타났다. 이러한 연구결과는 수학영재학생들에게 통계를 지도하는 데 있어 유용한 시사점을 제공한다.

초등 5학년 수학영재 학생이 만든 수학문제에 관한 조사.분석 (A Study on Investigating and Analyzing the Mathematical Problems Posed by the Mathematically Gifted 5th Grade Students in Elementary School)

  • 임문규
    • 대한수학교육학회지:학교수학
    • /
    • 제15권4호
    • /
    • pp.701-721
    • /
    • 2013
  • 이 연구는 초등학교 5학년 수학 영재 학생들에게 이제까지 학습한 수학 지식을 바탕으로, 스스로 수학 문제를 자유롭게 창의적이고 어려운 수학 문제를 많이 만들어 보게 하였다. 연구의 의도는 5학년 수학 영재 학생들은 어느 정도 수준의 수학 문제를 만드는지와 다양하고 확산적인 사고 활동을 하고 있는지를 알아보기 위함이었다. 학생들이 만든 수학 문제를 분석한 결과, 학생들은 다양한 영역에 걸쳐 다수의 수학 문제를 세련되게 만들었고, 적극적으로 문제 만들기에 임하였다. 이 결과, 학생들은 문제를 만드는 중에 다양하고 확산적 사고 활동이 작용되어 창조성 육성에 도움이 되었을 것으로 생각한다. 2009 개정 초등 수학교육과정에서, 수학학습을 통해 창조성을 기르는 것을 큰 목표로 하고 있는바, 다양하고 확산적 사고를 길러주기 위해서는 수학 문제 만들기 학습 지도를 실제 수업에서 항시 실천하는 것이 요망된다.

  • PDF

수학영재학급 학생들과 일반학급 학생들의 통계적 변이성 인식 수준 비교 연구 (A Comparison of Mathematically Talented Students and Non-Talented Students' Level of Statistical Thinking: The Noticing of Statistical Variability)

  • 고은성
    • 영재교육연구
    • /
    • 제23권3호
    • /
    • pp.387-406
    • /
    • 2013
  • 본 연구에서는 변이성 인식 능력을 중심으로 수학영재학생들과 일반학생들의 통계적 사고 수준을 비교한다. 연구결과 측정상황에서 중학교 수학영재학생들과 일반학생들 사이에 통계적으로 유의한 차이가 있는 것으로 나타난 반면, 초등학교 수학영재학생들과 일반학생들 사이에는 유의한 차이가 나타나지 않았다. 그리고 우연상황에서도 중학교 수학영재학생들과 일반학생들 사이에 통계적으로 유의한 차이가 있는 것으로 나타난 반면, 초등학교 수학영재학생들과 일반학생들 사이에는 유의한 차이가 나타나지 않았다. 그러나 수준별 빈도를 조사한 결과 수학영재학생들의 사고 수준이 상위 수준에 집약되어 분포하기보다는 일반학생들의 사고 수준이 상당부분 중첩되어 있는 것으로 나타났다. 이러한 연구결과는 수학영재학생들에게 통계를 지도하는 데 있어 유용한 시사점을 제공한다.

GrafEq를 활용한 디자인 활동에서 나타나는 수학영재아의 사고특성분석 (An analysis of characteristics of mathematically gifted high school students' thinking in design activities using GrafEq)

  • 이지원;신재홍;이수진
    • 한국학교수학회논문집
    • /
    • 제16권3호
    • /
    • pp.539-560
    • /
    • 2013
  • 본 연구의 목적은 고등학교 수학영재 학생들이 GrafEq를 활용한 디자인 활동을 하는 과정에서 나타나는 사고의 특성 알아보고자 함이다. 사전조사를 통해 GrafEq를 사용해 본 경험이 없고, 디자인 활동에 필요한 부등식의 영역을 학습한 과학 고등학교 학생 8명을 선발하여, 2인 1조로 4개의 팀으로 나누어 각각 6차시에 걸쳐 실험을 실시하였다. 연구 결과, 논리적 사고 및 수학적 추상화, 직관적 구조적 통찰, 유연한 사고, 발산적 사고 및 독창성, 패턴의 일반화 및 귀납적 추론과 같은 특성들이 나타났으며, 이를 통해 GrafEq에서의 디자인 활동은 학생들에게 다양한 사고를 자극함으로써 학생들의 인지적인 발달을 촉진시키는데 효과적임을 알 수 있었다.

  • PDF

중학교 3학년 수학 영재 학생들을 위한 수학적 모델링 교수.학습 자료의 개발 및 적용: 쓰나미를 소재로 (Development and Application of Teaching-Learning Materials for Mathematically-Gifted Students by Using Mathematical Modeling -Focus on Tsunami-)

  • 서지희;윤종국;이광호
    • 대한수학교육학회지:학교수학
    • /
    • 제15권4호
    • /
    • pp.785-799
    • /
    • 2013
  • 본 연구는 수학적 모델링 수업이 수학 영재 학생들에게 문제해결의 기회를 제공하고 수학적 모델링 활동을 통해 다양한 수학적 사고력을 발전시킬 수 있다는 가정 하에 중학교 3학년 수학 영재 학생들을 위한 수학적 모델링 교수 학습 자료를 개발하였다. 개발된 교수 학습 자료를 적용하여 사례연구를 통해 수학적 모델링의 단계별 활동과정을 살펴보고 각 단계에서 어떠한 수학적 사고능력이 나타나는지 분석하였다. 수학적 모델링 과정에서 다양한 수학적 사고능력이 나타났는데 문제를 이해하는 실세계 탐구과정에서는 정보의 조직화 능력이, 상황모델을 개발하는 과정에서는 직관적 통찰능력, 공간화/시각화 능력, 수학적 추론 능력, 반성적 사고 능력이 나타났다. 수학모델 개발과정에서는 수학적 추상화 능력, 공간화/시각화 능력, 수학적 추론 능력, 반성적 사고가 나타났으며 모델적용 과정에서는 일반화 및 적용 능력과 반성적 사고가 나타났다. 모델링 수업이 진행됨에 따라 반성적 사고능력이 더 많이 나타나는 것을 확인할 수 있었다.

  • PDF

LOGO를 이용한 프로젝트 학습에서 나타난 초등 수학영재 학생들의 전략적 사고 (The Strategic Thinking of Mathematically Gifted Elementary Students in LOGO Project Learning)

  • 류희찬;장인옥
    • 대한수학교육학회지:수학교육학연구
    • /
    • 제20권4호
    • /
    • pp.459-476
    • /
    • 2010
  • 본 연구의 목적은 LOGO를 이용한 프로젝트 학습에서 나타난 초등 수학영재 학생들의 전략적 사고 유형을 분석하여 LOGO 학습과 고등 사고 활동과의 연관성을 구체적으로 밝힘으로써 영재교육 프로그램으로서 LOGO 활용에 대한 새로운 방향을 제시하고 LOGO 교수-학습의 효과적인 접근 방안을 모색하는데 있다. LOGO 프로그래밍을 계획하는 과정에서는 기존의 지식과 절차를 활용하는 유추적 사고, 변수를 이용한 일반화, 여러 가지 명령어의 기능을 통합하여 활용하는 통합적 사고, 문제 해결을 위해 기존 명령어를 평가하는 비판적 사고, 현재의 상황을 새로운 관점에서 이해하고 응용하는 발전적 사고, 여러 가지 해결 방법을 구상하는 유연한 사고 등의 전략적 사고가 관찰되었다. 오류 수정 과정에서 나타난 전략은 명령어의 문법적인 지식, 그림과 절차를 대조하는 방법, 절차를 분해하는 분석적 사고, 도형-분석적 추론, 시각적 추론, 경험적 추론 등이 나타났다.

  • PDF

초등수학영재들의 메타인지적 사고 과정 사례 분석 (A Study on the Cases of Mathematically Gifted Elementary Students' Metacognitive Thinking)

  • 신은주;신선화;송상헌
    • 대한수학교육학회지:수학교육학연구
    • /
    • 제17권3호
    • /
    • pp.201-220
    • /
    • 2007
  • 본 연구는 초등수학영재들이 수학 과제를 해결하는 과정에서 활성화되는 메타인지적 사고의 과정을 분석하여 메타인지적 기능이 문제해결 과정의 성패에 미치는 영향을 조사하고, 이를 통해 메타인지적 사고를 활성화할 수 있는 방안에 대한 시사점을 제안하고자 한다. 수준이 다른 두 집단에서 선택한 7명으로부터 얻은 14가지의 사례를 Wilson & Clarke(2004)의 메타인지 모델을 기반으로 분석한 결과, 초등수학영재들이 주로 사용한 메타인지의 경로에는 ARE, RE, AERE의 3가지가 나타났다. 집단의 수준이 높을수록 ARE 경로를 선호하였는데 이는 문제해결에 성공한 학생들이 보여주는 주된 경로임도 확인하였다. 그리고 과제의 수준에 따라 메타인지 사고 과정이 다르다는 점, 같은 경로로 문제를 해결한 학생들이 동일한 메타인지적 사고를 하여도 메타인지적 사고의 능력에 따라 문제해결의 성패가 달라진다는 점, 메타인지적 지식에 대해 잘 의식하는 학생은 문제해결에 대한 조절과 제어 능력이 높은 면을 보인다는 점 등도 사례를 통해 확인하였다. 이를 바탕으로 초등수학영재들의 메타인지적 사고를 활성화하기 위한 3가지의 시사점을 얻었다.

  • PDF

수학적 상황과 비수학적 상황에서의 확산적 사고의 관계 연구 - TTCT의 도형검사와 MCPSAT를 중심으로 - (Relationship between Divergent Thinking in Mathematical and Non-Mathematical Situations -Based on the TTCT; Figural A and the MCPSAT-)

  • 황동주;이강섭;서종진
    • 영재교육연구
    • /
    • 제15권2호
    • /
    • pp.59-76
    • /
    • 2005
  • 본 연구의 목적은 수학적 상황에서의 확산적 사고와 비수학적 상황에서의 확산적 사고의 관계를 조사하기 위하여 중학교 2학년 학생 215명을 대상으로 검사를 실시하여 자료를 분석하였다. 자료 분석은 빈도, 퍼센트, t-검증과 상관 분석을 사용하였다. 본 연구의 결과는 첫 번째, 수학 영재 학생이 일반 학생보다 수학적 상황에서의 확산적 사고(MCPSAT)와 비 수학적 상황에서의 확산적 사고(TTCT)는 통계적으로 유의미하게 높은 점수를 받았다. 두 번째, 여학생이 남학생보다 비 수학적 상황에서의 확산적 사고(TTCT)에서 제목의 추상성을 제외하고 모든 요소에서 통계적으로 유의미하게 높은 점수를 받았다. 세 번째, 남학생이 여학생보다 수학적 상황에서의 확산적 사고에서 유창성과 융통성은 평균이 높게 나타나고 있으나 통계적으로는 유의미하지 않고 여학생이 남학생보다 수학적 상황에서의 확산적 사고에서 독창성의 평균이 높게 나타나고 있으며 통계적으로 유의미하게 나타나고 있다. 네 번째, 수학적 상황과 비 수학적 상황에서의 확산적 사고 점수사이의 상관관계는 통계적으로 유의미하게 나타나고 있으며 중학생 전체에서는 r=.41(p<.05)이고 r=.21에서 r=.56까지 분포하고 있으며 일반 학생은 r=.27(p<.05)이고 r =.07에서 r=.27까지 분포하고 있다. 다섯 번째로 수학 영재학생의 경우는 수학적 상황과 비 수학적 상황에서의 확산적 사고 점수사이의 상관관계는 r=.11이며 통계적으로 유의미하지 않게 나타나고 있다. 이 결과는 수학 영재학생의 경우 수학적 상황과 비 수학적 상황에서의 확산적 사고 점수사이의 상관관계는 거의 0에 가깝다고 할 수 있다. 이것은 수학적 상황에서의 확산적 사고능력은 비 수학적인 상황에서의 확산적 사고 조합된 능력이 아니라 다른 특별한 능력이라고 볼 수 있다. 그러나 본 연구에서 수학 영재 학생들의 사례수가 적어서 수학 영재 학생의 수학적 상황과 비 수학적 상황에서의 확산적 사고 점수 사이의 상관관계가 있다는 주장을 일반화하기에는 충분치 않을 수 있다는 제한점을 가지고 있다.