• 제목/요약/키워드: mathematical problem-solving

검색결과 1,024건 처리시간 0.028초

Teachers and Research Studies in Computer-Assisted Learning

  • Lee, Joong-Kwoen;Ro, Young-Soon
    • 한국수학교육학회지시리즈D:수학교육연구
    • /
    • 제1권1호
    • /
    • pp.87-94
    • /
    • 1997
  • "In computer-assisted learning (CAL), small group problem-solving instruction is efficient. CAL should shift the focus of school mathematics toward goals for problem solving and mathematical modeling. For the shift, the roles and responsibilities for teachers are very important in CAL" (Heid et al. 1990).

  • PDF

초등 수학영재의 도전적 문제 상황을 위한 원용삼방호구(圓容三方互求)의 활용 (Application of '圓容三方互求' as a Mathematically Challenging Problem for Mathematically Gifted Elementary Students)

  • 장혜원
    • 한국수학사학회지
    • /
    • 제29권1호
    • /
    • pp.17-30
    • /
    • 2016
  • This study focused on the selection and application of mathematical problems to provide mathematically challenging tasks for the gifted elementary students. For the selection, a mathematical problem from <算術管見> of Joseon dynasty, '圓容三方互求', was selected, considering the participants' experiences of problem solving and the variety of approaches to the problem. For the application, teaching strategies such as individual problem solving and sharing of the solving methods were used. The problem was provided for 13 mathematically gifted elementary students. They not only solved it individually but also shared their approaches by presentations. Their solving and sharing processes were observed and their results were analyzed. Based on this, some didactical considerations were suggested.

중고등학생의 대수적 추론 문제해결능력과 문제해결과정 분석 (An Analysis on secondary school students' problem-solving ability and problem-solving process through algebraic reasoning)

  • 김성경;현은정;김지연
    • East Asian mathematical journal
    • /
    • 제31권2호
    • /
    • pp.145-165
    • /
    • 2015
  • The purpose of this study is to suggest how to go about teaching and learning secondary school algebra by analyzing problem-solving ability and problem-solving process through algebraic reasoning. In doing this, 393 students' data were thoroughly analyzed after setting up the exam questions and analytic standards. As with the test conducted with technical school students, the students scored low achievement in the algebraic reasoning test and even worse the majority tried to answer the questions by substituting arbitrary numbers. The students with high problem-solving abilities tended to utilize conceptual strategies as well as procedural strategies, whereas those with low problem-solving abilities were more keen on utilizing procedural strategies. All the subject groups mentioned above frequently utilized equations in solving the questions, and when that utilization failed they were left with the unanswered questions. When solving algebraic reasoning questions, students need to be guided to utilize both strategies based on the questions.

초등 수학교과서의 문제해결 역량 및 과제 유형 분석: 수와 연산 영역의 도전/생각 수학과 탐구 수학을 중심으로 (Analysis of problem solving competency and types of tasks in elementary mathematics textbooks: Challenging/Thinking and inquiry mathematics in the domain of number and operation)

  • 여승현;서희주;한선영;김진호
    • 한국수학교육학회지시리즈A:수학교육
    • /
    • 제60권4호
    • /
    • pp.431-449
    • /
    • 2021
  • 본 연구는 초등학교 교과서가 반영하고 있는 문제해결 양상을 수와 연산 단원들을 중심으로 살펴보았다. 문제해결의 하위요소를 중심으로 수학적 활동에 대해 코딩을 실시한 결과 실행이 강조되는 가운데 학년별로 강조되는 하위 요소들이 다르게 나타났고, 잠재집단분석을 통해서 과제의 유형을 분류해 보았다. 향후 교과서 개발과 교사지원에 대한 시사점을 제공하고자 한다.

다전략 수학 문제해결 학습이 초등학생의 수학적 창의성과 수학적 태도에 미치는 영향 (The Effects of Mathematical Problem Solving with Multiple Strategies on the Mathematical Creativity and Attitudes of Students)

  • 김서령;박만구
    • 한국수학교육학회지시리즈C:초등수학교육
    • /
    • 제24권4호
    • /
    • pp.175-187
    • /
    • 2021
  • 본 연구의 목적은 초등학교 6학년 학생에게 다전략 수학 문제해결 지도 후, 학생들의 수학적 창의성과 수학적 태도에 미치는 영향을 알아보기 위한 것이다. 본 연구를 위하여 서울시 S초등학교 6학년 학생 49명(실험집단 26명, 비교집단 23명)을 대상으로 19차시의 수업을 진행한 후, 수학적 창의성 및 태도에 대하여 i-STATistics를 사용하여 t-검정을 실시하였다. 연구의 결과 다전략 수학 문제해결 지도를 통한 수학학습은 초등학교 학생들의 수학적 창의성과 그 하위 요소인 유창성, 융통성, 독창성 신장에 효과가 있었다. 또한 다전략 수학 문제해결 지도를 통한 수학학습은 초등학교 학생의 수학적 태도의 하위 요인 중 수학 흥미, 가치, 의지, 효능감 신장에 효과가 있었다. 그리고 다전략 수학 문제해결 지도를 통한 수학학습이 모든 영역에 걸친 수학적 태도의 변화에 긍정적인 영향을 주었다. 연구자들은 연구 대상의 학년과 인원을 확대한 연구와 심층면담과 같은 질적 연구 방법을 포함한 장기간의 후속 연구를 제안하였다.

수학문제의 창의적 해결력 신장에 관한 연구 -농어촌 중학교 수학영재를 중심으로- (A study on the improvement of ability of a creative solving mathematical problem)

  • 박형빈;서경식
    • 한국학교수학회논문집
    • /
    • 제6권1호
    • /
    • pp.1-17
    • /
    • 2003
  • 이 논문은 수학적인 재능을 가진 농어촌 수학영재지도를 위하여 농어촌 지역에 위치한 과학영재교육원(지역교육청 주관)에서 수학하는 중학교 2학년 학생을 대상으로 창조적인 수학문제 해결력을 증진시키는 방법을 연구한다. 특히 수학영재교육에서 수학 창의적 문제해결력을 증진시키기 위한 탐색방안을 연구하여 탐구학습에 적용하는 수업모형과 학습지도안을 개발하고 개발된 탐구학습지도안을 탐구학습모형에 적용하여 지적능력(IQ)에 따른 수업 형태의 선호도 반응, 지적능력과 수학창의력 능력과의 관계, 탐구학습과 수학 창의적 문제해결 능력과의 관계를 비교분석하여 수학영재교육에 있어서 수학 창의적 문제해결에 알맞는 교수·학습 모형과 학습내용을 탐색하여 보편화된 교재이외의 다양한 수학학습탐구주제를 가지고 학생들의 참여를 이끌어 내어 토론식 수업을 전개하는 것이 바람직한 수업모델이 될 수 있을 것이라는 결론을 얻었다.

  • PDF

학습 전이에 있어서 유추 거리와 지식의 영향 (Influence of Analogy Distance and Mathematical Knowledge in Transfer of Learning)

  • 성창근
    • 한국수학교육학회지시리즈C:초등수학교육
    • /
    • 제17권1호
    • /
    • pp.1-16
    • /
    • 2014
  • 본 연구는 유추 거리 및 수학적 지식과 학습의 전이 사이의 관계를 규명하기 위해 수행되었다. 구체적으로 유추적 거리에 따라 구분된 세 가지 전이 문제 해결에서 차이를 보이는지, 그리고 각 전이 문제를 성공적으로 해결하는데 기여하는 수학적 지식은 무엇인지를 분석하였다. 분석 결과 세 가지 종류의 전이 문제 해결에서 통계적으로 유의한 차이를 보였으며 유추 거리가 증가할수록 성공률은 점차적으로 감소하였다. 또한 사실 지식 보다는 개념적 지식이 전이 문제를 해결하는데 긍정적으로 기여하였다. 이상의 결과를 토대로 본 연구는 학습의 전이를 위해 수학 수업은 어떠한 점에 초점을 맞추어야 하는지, 그리고 유추 거리라는 새로운 구인을 찾고 그것이 전이에 미치는 영향을 실증적으로 규명했다는 점에서 의의를 찾을 수 있었다.

연속적으로 공변하는 두 양에 대한 추론의 차이가 문제 해결에 미치는 영향 (How does the middle school students' covariational reasoning affect their problem solving?)

  • 김채연;신재홍
    • 한국수학교육학회지시리즈A:수학교육
    • /
    • 제55권3호
    • /
    • pp.251-279
    • /
    • 2016
  • There are many studies on 'how' students solve mathematical problems, but few of them sufficiently explained 'why' they have to solve the problems in their own different ways. As quantitative reasoning is the basis for algebraic reasoning, to scrutinize a student's way of dealing with quantities in a problem situation is critical for understanding why the student has to solve it in such a way. From our teaching experiments with two ninth-grade students, we found that emergences of a certain level of covariational reasoning were highly consistent across different types of problems within each participating student. They conceived the given problem situations at different levels of covariation and constructed their own quantity-structures. It led them to solve the problems with the resources accessible to their structures only, and never reconciled with the other's solving strategies even after having reflection and discussion on their solutions. It indicates that their own structure of quantities constrained the whole process of problem solving and they could not discard the structures. Based on the results, we argue that teachers, in order to provide practical supports for students' problem solving, need to focus on the students' way of covariational reasoning of problem situations.

수학적 모델링 활동이 수학적 문제해결력 및 수학적 성향에 미치는 영향 (The Effects of Mathematical Modeling Activities on Mathematical Problem Solving and Mathematical Dispositions)

  • 고창수;오영열
    • 한국초등수학교육학회지
    • /
    • 제19권3호
    • /
    • pp.347-370
    • /
    • 2015
  • 본 연구는 수학적 모델링이 초등학생들의 수학적 문제해결력과 수학적 성향에 미치는 영향을 알아보는데 목적이 있다. 이를 위해서 초등학교 5학년 학생에게 8가지 주제로 총 16차시의 수학적 모델링 수업을 실시하였다. 그 결과, 수학적 모델링 중심의 수학 수업은 전통적인 교과서 중심의 수업에 비해서 수학적 문제해결력과 수학적 성향의 측면에서 통계적으로 유의미한 차이를 보여주었다. 또한, 수학적 모델링 활동은 학생들의 의사소통, 추론, 반성적 사고와 같이 다양한 수학적 사고를 촉진시키는 것으로 드러났으며, 학생들이 수업에 적극적으로 참여함으로써 수학에 대한 긍정적 성향을 갖게 되는 것으로 나타났다. 이와 같이 수학적 모델링 중심의 수학 수업이 초등학생들의 수학 학습에 양적 및 질적인 측면에서 유의미한 영향이 있는 것으로 나타남에 따라서 추후 초등학교에서 수학적 모델링의 적용 가능성 및 초등학교 수학과 교수 학습방법 연구에 대해 시사하는 바가 크다고 생각한다.

넓이관련 열린 문제에 관한 문제해결 과정 분석 (Investigation of the Problem Solving in Open-Problem Related to Area)

  • 김민경
    • 한국수학교육학회지시리즈A:수학교육
    • /
    • 제43권3호
    • /
    • pp.275-289
    • /
    • 2004
  • The purpose of the study is to investigate how children and preservice teachers would make a progress in solving the open-problems related to area. In knowledge-based information age, information inquiry, information construction, and problem solving are required. At the level of elementary school mathematics, area is mainly focused on the shape of polygon such as square, rectangle. However, the shape which we need to figure out at some point would not be always polygon-shape. With this perspective, many open-problems are introduced to children as well as preservice teacher. Then their responses are analyzed in terms of their logical thinking and their understanding of area. In order to make students improve their critical thinking and problem solving ability in real situation, the use of open problems could be one of the valuable methods to apply.

  • PDF