• Title/Summary/Keyword: mathematical model development

Search Result 765, Processing Time 0.027 seconds

A Comparative Review of Radiation-induced Cancer Risk Models

  • Lee, Seunghee;Kim, Juyoul;Han, Seokjung
    • Journal of Radiation Protection and Research
    • /
    • v.42 no.2
    • /
    • pp.130-140
    • /
    • 2017
  • Background: With the need for a domestic level 3 probabilistic safety assessment (PSA), it is essential to develop a Korea-specific code. Health effect assessments study radiation-induced impacts; in particular, long-term health effects are evaluated in terms of cancer risk. The objective of this study was to analyze the latest cancer risk models developed by foreign organizations and to compare the methodology of how they were developed. This paper also provides suggestions regarding the development of Korean cancer risk models. Materials and Methods: A review of cancer risk models was carried out targeting the latest models: the NUREG model (1993), the BEIR VII model (2006), the UNSCEAR model (2006), the ICRP 103 model (2007), and the U.S. EPA model (2011). The methodology of how each model was developed is explained, and the cancer sites, dose and dose rate effectiveness factor (DDREF) and mathematical models are also described in the sections presenting differences among the models. Results and Discussion: The NUREG model was developed by assuming that the risk was proportional to the risk coefficient and dose, while the BEIR VII, UNSCEAR, ICRP, and U.S. EPA models were derived from epidemiological data, principally from Japanese atomic bomb survivors. The risk coefficient does not consider individual characteristics, as the values were calculated in terms of population-averaged cancer risk per unit dose. However, the models derived by epidemiological data are a function of sex, exposure age, and attained age of the exposed individual. Moreover, the methodologies can be used to apply the latest epidemiological data. Therefore, methodologies using epidemiological data should be considered first for developing a Korean cancer risk model, and the cancer sites and DDREF should also be determined based on Korea-specific studies.

Development and Evaluation of a Portfolio Selection Model and Investment Algorithm utilizing a Markov Chain in the Foreign Exchange Market (외환 시장에서 마코브 체인을 활용한 포트폴리오 선정 모형과 투자 알고리즘 개발 및 성과평가)

  • Choi, Jaeho;Jung, Jongbin;Kim, Seongmoon
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.40 no.2
    • /
    • pp.1-17
    • /
    • 2015
  • In this paper, we propose a portfolio selection model utilizing a Markov chain for investing in the foreign exchange market based on market forecasts and exchange rate movement predictions. The proposed model is utilized to compute optimum investment portfolio weights for investing in margin-based markets such as the FX margin market. We further present an objective investment algorithm for applying the proposed model in real-life investments. Empirical performance of the proposed model and investment algorithm is evaluated by conducting an experiment in the FX market consisting of the 7 most traded currency pairs, for a period of 9 years, from the beginning of 2005 to the end of 2013. We compare performance with 1) the Dollar Index, 2) a 1/N Portfolio that invests the equal amount in the N target assets, and 3) the Barclay BTOP FX Index. Performance is compared in terms of cumulated returns and Sharpe ratios. The results suggest that the proposed model outperforms all benchmarks during the period of our experiment, for both performance measures. Even when compared in terms of pre- and post-financial crisis, the proposed model outperformed all other benchmarks, showing that the model based on objective data and mathematical optimization achieves superior performance empirically.

A study on the derivation of Dimensionless Unit Hydrographs by the Linear model in the small watersheds (선형 Model에 의한 소류역에 있어서의 무차원 단위도 유도에 관한 연구)

  • 이순혁;한중석
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.23 no.3
    • /
    • pp.78-87
    • /
    • 1981
  • This study was attempted to get dimensionless unit hydrograph by linear model which can be used to the estimation of flood for the development of Agricultural water resources and laid emphasis on the application of dimensionless unit hydrographs for the ungaged watersheds by applying linear model. The results summarized through this study are as follows. 1.Peak discharge is found to be Qp= CAR (C =0. 895A-o.145) having high significance between peak discharge, Qp and effective rainfall, R within the range of small watershed area, 84 to 470km2. consequently, linearity was acknowledged between rainfall and runoff. Reasonability is confirmed for the derivation of dimensionless unit hydrograph by linear model. 2.Through mathematical analysis, formula for the derivation of dimensionless unit hydrograph was derived. qp--p=(tp--t)n-1[e-(n-1)](tp--t-1) 3.Moment method was used for the evaluation of storage constant, K and shape parameter, n for the derivation of dimensionless unit hydrograph. Storage constant, K is more closely related with the such watershed characteristics as length of main stream and slopes. On the other hand, the shape parameter, n was derived with such watershed characteristics as watershed area, river length, centroid distance of the basin and slopes. 4.Time to peak discharge, Tp could be expressed as Tp=1. 25 (√s/L)0.76 having a high significance. 5.Dimensionless unit hydrographs by linear model stood more closely to the observe dimensionless unit hydrographs On the contrary, dimensionless unit hydrographs by S.C. S. method has much difference in comparison with linear model at the falling limb of hydrographs. 6.Relative errors in the q/qp at the point of 0.8 and 1.2 for the dimensionles ratio by linear model and S. C. S. method showed to be 2.41, 1.57 and 4.0, 3.19 percent respectively to the q/qp of observed dimensionless unit hydrographs. 7.Derivation of dimensionless unit hydrograph by linear model can be accomplished by linking the two empirical formulars for storage constant, K, and shape parameter, n with derivation formular for dimensionless unit hydrograph for the ungaged small watersheds.

  • PDF

Development of Ship Dynamics Model by Free-Running Model Tests and Regression (자유항주모형시험과 회귀분석을 통한 선체 동역학 모델의 개발)

  • Kim, Kiwon;Kim, Hoyong;Choi, Sungeun;Na, Ki-In;Lee, Hyuk;Seo, Jeonghwa
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.3
    • /
    • pp.173-182
    • /
    • 2022
  • The present study suggests a procedure of establishing a ship dynamics modeling by regression of free-running model test results. The hydrodynamic force and moment of the whole model ship is derived from the low-pass filtered acceleration in the turning circle and zigzag maneuver tests. Force and moment of the propeller and rudder are separated from that of the whole ship to acquire the hull force and moment terms, based on the principles of the component model. The low-pass filter frequency is verified in prior to dynamics modeling, to find the threshold frequency of 2.5 Hz. The dynamics modeling of the hull is compared with the component modeling by captive model tests. Because of strong correlation between sway velocity, yaw angular velocity, and heel angle, each maneuvering coefficient is not able to be validated, but the whole modeling shows good agreement with the captive model tests.

Uncertainty Calculation Algorithm for the Estimation of the Radiochronometry of Nuclear Material (핵물질 연대측정을 위한 불확도 추정 알고리즘 연구)

  • JaeChan Park;TaeHoon Jeon;JungHo Song;MinSu Ju;JinYoung Chung;KiNam Kwon;WooChul Choi;JaeHak Cheong
    • Journal of Radiation Industry
    • /
    • v.17 no.4
    • /
    • pp.345-357
    • /
    • 2023
  • Nuclear forensics has been understood as a mendatory component in the international society for nuclear material control and non-proliferation verification. Radiochronometry of nuclear activities for nuclear forensics are decay series characteristics of nuclear materials and the Bateman equation to estimate when nuclear materials were purified and produced. Radiochronometry values have uncertainty of measurement due to the uncertainty factors in the estimation process. These uncertainties should be calculated using appropriate evaluation methods that are representative of the accuracy and reliability. The IAEA, US, and EU have been researched on radiochronometry and uncertainty of measurement, although the uncertainty calculation method using the Bateman equation is limited by the underestimation of the decay constant and the impossibility of estimating the age of more than one generation, so it is necessary to conduct uncertainty calculation research using computer simulation such as Monte Carlo method. This highlights the need for research using computational simulations, such as the Monte Carlo method, to overcome these limitations. In this study, we have analyzed mathematical models and the LHS (Latin Hypercube Sampling) methods to enhance the reliability of radiochronometry which is to develop an uncertainty algorithm for nuclear material radiochronometry using Bateman Equation. We analyzed the LHS method, which can obtain effective statistical results with a small number of samples, and applied it to algorithms that are Monte Carlo methods for uncertainty calculation by computer simulation. This was implemented through the MATLAB computational software. The uncertainty calculation model using mathematical models demonstrated characteristics based on the relationship between sensitivity coefficients and radiative equilibrium. Computational simulation random sampling showed characteristics dependent on random sampling methods, sampling iteration counts, and the probability distribution of uncertainty factors. For validation, we compared models from various international organizations, mathematical models, and the Monte Carlo method. The developed algorithm was found to perform calculations at an equivalent level of accuracy compared to overseas institutions and mathematical model-based methods. To enhance usability, future research and comparisons·validations need to incorporate more complex decay chains and non-homogeneous conditions. The results of this study can serve as foundational technology in the nuclear forensics field, providing tools for the identification of signature nuclides and aiding in the research, development, comparison, and validation of related technologies.

A comparative study of domestic and international research trends of mathematics education through topic modeling (토픽모델링을 활용한 국내외 수학교육 연구 동향 비교 연구)

  • Shin, Dongjo
    • The Mathematical Education
    • /
    • v.59 no.1
    • /
    • pp.63-80
    • /
    • 2020
  • This study analyzed 3,114 articles published in KCI journals and 1,636 articles published in SSCI journals from 2000 to 2019 in order to compare domestic and international research trends of mathematics education using a topic modeling method. Results indicated that there were 16 similar research topics in domestic and international mathematics education journals: algebra/algebraic thinking, fraction, function/representation, statistics, geometry, problem-solving, model/modeling, proof, achievement effect/difference, affective factor, preservice teacher, teaching practice, textbook/curriculum, task analysis, assessment, and theory. Also, there were 7 distinct research topics in domestic and international mathematics education journals. Topics such as affective/cognitive domain and research trends, mathematics concept, class activity, number/operation, creativity/STEAM, proportional reasoning, and college/technology were identified from the domestic journals, whereas discourse/interaction, professional development, identity/equity, child thinking, semiotics/embodied cognition, intervention effect, and design/technology were the topics identified from the international journals. The topic related to preservice teacher was the most frequently addressed topic in both domestic and international research. The topic related to in-service teachers' professional development was the second most popular topic in international research, whereas it was not identified in domestic research. Domestic research in mathematics education tended to pay attention to the topics concerned with the mathematical competency, but it focused more on problem-solving and creativity/STEAM than other mathematical competencies. Rather, international research highlighted the topic related to equity and social justice.

A study on the pedagogical consideration of the related knowledge for teaching 'Approximation' conception (근사개념 지도를 위한 관련 지식의 교수학적 고찰)

  • Chung, Young-Woo;Lee, Mok-Hwa;Kim, Boo-Yoon
    • Communications of Mathematical Education
    • /
    • v.26 no.1
    • /
    • pp.137-154
    • /
    • 2012
  • Approximation' is one of central conceptions in calculus. A basic conception for explaining 'approximation' is 'tangent', and 'tangent' is a 'line' with special condition. In this study, we will study pedagogically these mathematical knowledge on the ground of a viewpoint on the teaching of secondary geometry, and in connection with these we will suggest the teaching program and the chief end for the probable teaching. For this, we will examine point, line, circle, straight line, tangent line, approximation, and drive meaningfully mathematical knowledge for algebraic operation through the process translating from the above into analytic geometry. And we will construct the stream line of mathematical knowledge for approximation from a view of modern mathematics. This study help mathematics teachers to promote the pedagogical content knowledge, and to provide the basis for development of teaching model guiding the mathematical knowledge. Moreover, this study help students to recognize that mathematics is a systematic discipline and school mathematics are activities constructed under a fixed purpose.

Development of Physical Human Bronchial Tree Models from X-ray CT Images (X선 CT영상으로부터 인체의 기관지 모델의 개발)

  • Won, Chul-Ho;Ro, Chul-Kyun
    • Journal of Sensor Science and Technology
    • /
    • v.11 no.5
    • /
    • pp.263-272
    • /
    • 2002
  • In this paper, we investigate the potential for retrieval of morphometric data from three dimensional images of conducting bronchus obtained by X-ray Computerized Tomography (CT) and to explore the potential for the use of rapid prototype machine to produce physical hollow bronchus casts for mathematical modeling and experimental verification of particle deposition models. We segment the bronchus of lung by mathematical morphology method from obtained images by CT. The surface data representing volumetric bronchus data in three dimensions are converted to STL(streolithography) file and three dimensional solid model is created by using input STL file and rapid prototype machine. Two physical hollow cast models are created from the CT images of bronchial tree phantom and living human bronchus. We evaluate the usefulness of the rapid prototype model of bronchial tree by comparing diameters of the cross sectional area bronchus segments of the original CT images and the rapid prototyping-derived models imaged by X-ray CT.

The Development of e-Learning System for Science and Engineering Mathematics using Computer Algebra System (컴퓨터 대수 시스템을 이용한 이공계 수학용이러닝 시스템 개발)

  • Park, Hong-Joon;Jun, Young-Cook;Jang, Moon-Suk
    • The KIPS Transactions:PartA
    • /
    • v.14A no.6
    • /
    • pp.383-390
    • /
    • 2007
  • This paper describes the e-learning system for science and engineering mathematics using computer algebra system and Bayesian inference network. The best feature of this system is using one of the most recent mathematical dynamic web content authoring model which is called client independent dynamic web content authoring model and using the Bayesian inference network for diagnosing student's learning. The authoring module using computer algebra system provides teacher-user with easy way to make dynamic mathematical web contents. The diagnosis module using Bayesian inference network helps students know the weaker parts of their learning, in this way our system determines appropriate next learning sequences in order to provide supplementary learning feedback.

Flight Dynamics Mathematical Modeling of Quad Tilt Rotor UAM for Real-Time Simulation (쿼드 틸트 로터 UAM 실시간 비행 시뮬레이션을 위한 비행역학 수학적 모델링)

  • Hyunseo Kang;Nahyeon Roh;Do-young Kim;Min-jun Park
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.4
    • /
    • pp.18-26
    • /
    • 2024
  • This paper describes the results of a study on Generic Quad Tilt Rotor UAM aircraft, focusing on nonlinear mathematical modeling and the development of real-time simulation software. In this research, we designed a configuration for a Generic Quad Tilt Rotor eVTOL UAM aircraft based on NASA's UAM mission requirements. We modeled the aerodynamics using a database, the prop-rotor dynamics with a thrust database, and included a ground reaction and atmospheric model in the flight model. We defined the control concept for various modes(helicopter mode, transition mode, and airplane mode), derived tilt angle corridors, and formulated flight control requirements. The resultant real-time flight simulation software not only performs trim analysis for Tilt Rotor UAM aircraft but also predicts handling qualities, optimizes tilt angle scheduling based on dynamic characteristics, designs and validates flight control laws for helicopter, transition, and airplane modes, and facilitates flight training through simulator integration.