• Title/Summary/Keyword: mathematical inversion

Search Result 65, Processing Time 0.022 seconds

A NOTE ON SELF-BILINEAR MAPS

  • Cheon, Jung-Hee;Lee, Dong-Hoon
    • Bulletin of the Korean Mathematical Society
    • /
    • v.46 no.2
    • /
    • pp.303-309
    • /
    • 2009
  • Cryptographic protocols depend on the hardness of some computational problems for their security. Joux briefly summarized known relations between assumptions related bilinear map in a sense that if one problem can be solved easily, then another problem can be solved within a polynomial time [6]. In this paper, we investigate additional relations between them. Firstly, we show that the computational Diffie-Hellman assumption implies the bilinear Diffie-Hellman assumption or the general inversion assumption. Secondly, we show that a cryptographic useful self-bilinear map does not exist. If a self-bilinear map exists, it might be used as a building block for several cryptographic applications such as a multilinear map. As a corollary, we show that a fixed inversion of a bilinear map with homomorphic property is impossible. Finally, we remark that a self-bilinear map proposed in [7] is not essentially self-bilinear.

ON THE SET OF CRITICAL EXPONENTS OF DISCRETE GROUPS ACTING ON REGULAR TREES

  • Kwon, Sanghoon
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.2
    • /
    • pp.475-484
    • /
    • 2019
  • We study the set of critical exponents of discrete groups acting on regular trees. We prove that for every real number ${\delta}$ between 0 and ${\frac{1}{2}}\;{\log}\;q$, there is a discrete subgroup ${\Gamma}$ acting without inversion on a (q+1)-regular tree whose critical exponent is equal to ${\delta}$. Explicit construction of edge-indexed graphs corresponding to a quotient graph of groups are given.

WAITING TIME DISTRIBUTION IN THE M/M/M RETRIAL QUEUE

  • Kim, Jeongsim;Kim, Jerim
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.5
    • /
    • pp.1659-1671
    • /
    • 2013
  • In this paper, we are concerned with the analysis of the waiting time distribution in the M/M/m retrial queue. We give expressions for the Laplace-Stieltjes transform (LST) of the waiting time distribution and then provide a numerical algorithm for calculating the LST of the waiting time distribution. Numerical inversion of the LSTs is used to calculate the waiting time distribution. Numerical results are presented to illustrate our results.

A PROOF OF STIRLING'S FORMULA

  • Park, June-Sang
    • Communications of the Korean Mathematical Society
    • /
    • v.9 no.4
    • /
    • pp.853-855
    • /
    • 1994
  • The object of present note is to give a very short proof of Stirling's formula which uses only a formula for the generalized zeta function. There are several proofs for this formula. For example, Dr. E. J. Routh gave an elementary proof using Wallis' theorem in lectures at Cambridge ([5, pp.66-68]). We can find another proof which used the Maclaurin summation formula ([5, pp.116-120]). In [1], they used the Central Limit Theorem or the inversion theorem for characteristic functions. In [2], pp. Diaconis and D. Freeman provided another proof similarly as in [1]. J. M. Patin [7] used the Lebesgue dominated convergence theorem.

  • PDF

FRACTIONAL INTEGRAL ALONG HOMOGENEOUS CURVES IN THE HEISENBERG GROUP

  • KIM JOONIL
    • Journal of the Korean Mathematical Society
    • /
    • v.42 no.3
    • /
    • pp.499-516
    • /
    • 2005
  • We obtain the type set for the fractional integral operator along the curve $(t,t^2,\;{\alpha}t^3)$ on the three dimensional Heisenberg group when $\alpha\neq{\pm}1/6$. The proof is based on the Fourier inversion formula and the angular Littlewood-Paley decompositions in the Heisenberg group in [5].

TIME-FREQUENCY ANALYSIS ASSOCIATED WITH K-HANKEL-WIGNER TRANSFORMS

  • Boubatra, Mohamed Amine
    • Communications of the Korean Mathematical Society
    • /
    • v.37 no.2
    • /
    • pp.521-535
    • /
    • 2022
  • In this paper, we introduce the k-Hankel-Wigner transform on R in some problems of time-frequency analysis. As a first point, we present some harmonic analysis results such as Plancherel's, Parseval's and an inversion formulas for this transform. Next, we prove a Heisenberg's uncertainty principle and a Calderón's reproducing formula for this transform. We conclude this paper by studying an extremal function for this transform.

UNITARY ANALOGUES OF A GENERALIZED NUMBER-THEORETIC SUM

  • Traiwat Intarawong;Boonrod Yuttanan
    • Communications of the Korean Mathematical Society
    • /
    • v.38 no.2
    • /
    • pp.355-364
    • /
    • 2023
  • In this paper, we investigate the sums of the elements in the finite set $\{x^k:1{\leq}x{\leq}{\frac{n}{m}},\;gcd_u(x,n)=1\}$, where k, m and n are positive integers and gcdu(x, n) is the unitary greatest common divisor of x and n. Moreover, for some cases of k and m, we can give the explicit formulae for the sums involving some well-known arithmetic functions.

IN INTEGRAL TRANSFORM INVOLVING TWO GENERALISED H-FUNCTIONS

  • Sharma, S.D.
    • Kyungpook Mathematical Journal
    • /
    • v.19 no.1
    • /
    • pp.119-125
    • /
    • 1979
  • In the present paper we study a new integral transform whose kernel involves the product of two H-functions of two complex variables. Next, we establish an inversion formula for this new transform. On account of very general nature of its kernel, several other integral transforms studies earlier by many research workers viz., Bose (1952), Mukherji (1962), Nigam (1963), Rathie (1965), Singh (1969), Mittal & Goel (1973), and Gupta, Garg & Kalla (1975), follow as its particular cases.

  • PDF

Robust seismic waveform inversion using backpropagation algorithm (Hybrid L1/L2 를 이용한 주파수 영역 탄성파 파형역산)

  • Chung, Woo-Keen;Ha, Tae-Young;Shin, Chang-Soo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.124-129
    • /
    • 2007
  • For seismic imaging and inversion, the inverted image depends on how we define the objective function. ${\ell}^1$-norm is more robust than ${\ell}^2$-norm. However, it is difficult to apply the Newton-type algorithm directly because the partial derivative for ${\ell^1$-norm has a singularity. In our paper, to overcome the difficulties of singularities, Huber function given by hybrid ${\ell}^1/{\ell}^2$-norm is used. We tested the robustness of our new object function with several noisy data set. Numerical results show that the new objective function is more robust to band limited spiky noise than the conventional object function.

  • PDF

SPECTRAL THEOREMS ASSOCIATED TO THE DUNKL OPERATORS

  • Mejjaoli, Hatem
    • Korean Journal of Mathematics
    • /
    • v.24 no.4
    • /
    • pp.693-722
    • /
    • 2016
  • In this paper, we characterize the support for the Dunkl transform on the generalized Lebesgue spaces via the Dunkl resolvent function. The behavior of the sequence of $L^p_k$-norms of iterated Dunkl potentials is studied depending on the support of their Dunkl transform. We systematically develop real Paley-Wiener theory for the Dunkl transform on ${\mathbb{R}}^d$ for distributions, in an elementary treatment based on the inversion theorem. Next, we improve the Roe's theorem associated to the Dunkl operators.