DOI QR코드

DOI QR Code

FRACTIONAL INTEGRAL ALONG HOMOGENEOUS CURVES IN THE HEISENBERG GROUP

  • KIM JOONIL (Department of Mathematics Chung-Ang University)
  • Published : 2005.05.01

Abstract

We obtain the type set for the fractional integral operator along the curve $(t,t^2,\;{\alpha}t^3)$ on the three dimensional Heisenberg group when $\alpha\neq{\pm}1/6$. The proof is based on the Fourier inversion formula and the angular Littlewood-Paley decompositions in the Heisenberg group in [5].

Keywords

References

  1. M. Christ, Endpoint bounds for singular fractional integral operators, preprint, unpublished, 1988
  2. M. Christ, Convolution, curvature, and combinatorics: a case study, Int. Math. Res. Not. 19 (1998), 1033-1048 https://doi.org/10.1155/S1073792898000610
  3. G. B. Folland, Harmonic analysis in phase space, Annals of Mathematics Studies, Princeton Univ. Press, 122 (1989)
  4. A. Greenleaf, S. Wainger, and A. Seeger, A On X-ray transforms for rigid line complexes and integrals over curves in $R^4$, Proc. Amer. Math. Soc. 127 (1999), 3533-3545 https://doi.org/10.1090/S0002-9939-99-05379-4
  5. J. Kim, $L^p$-estimate for singular integrals and maximal operators associated with flat curves on the Heisenberg group, Duke. Math. J. 114 (2002), 555-593 https://doi.org/10.1215/S0012-7094-02-11434-3
  6. D. Obelin, Convolution estimates for some measures on curves, Proc. Amer. Math. Soc. 99 (1987), 56-60
  7. S. Secco, $L^p$-improving properties of measures supported on curves on the Heisenberg group, Studia Math. 132 (1999), 179-201 https://doi.org/10.4064/sm-132-2-179-201
  8. S. Secco, Fractional integration along homogeneous curves in $R^3$, Math. Scand. 85 (1999), 259-270 https://doi.org/10.7146/math.scand.a-18275
  9. E. M. Stein, Harmonic Analysis:Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, 1993