• Title/Summary/Keyword: mathematical intuition

Search Result 70, Processing Time 0.019 seconds

An Analysis on the Mathematical Problem Solving via Intuitive Thinking of the Korean and American 6th Grade Students (한국과 미국 6학년 학생들의 직관적 사고에 의한 수학 문제해결 분석)

  • Lee, Dae Hyun
    • The Mathematical Education
    • /
    • v.55 no.1
    • /
    • pp.21-39
    • /
    • 2016
  • This research examined the Korean and American $6^{th}$ grade students' mathematical problem solving ability and methods via an intuitive thinking. For this, the survey research was used. The researcher developed the questionnaire which consists of problems with intuitive and algorithmic problem solving in number and operation, figure and measurement areas. 57 Korean $6^{th}$ grade students and 60 American $6^{th}$ grade students participated. The result of the analysis showed that Korean students revealed a higher percentage than American students in correct answers. But it was higher in the rate of Korean students attempted to use the algorithm. Two countries' students revealed higher rates in that they tried to solve the problems using intuitive thinking in geometry and measurement areas. Students in both countries showed the lower percentages of correct answer in problem solving to identify the impact of counterintuitive thinking. They were affected by potential infinity concept and the character of intuition in the problem solving process regardless of the educational environments and cultures.

Mathematical Cognition as the Construction of Concepts in Kant's Critique of Pure Reason ("순수이성비판"에 나타난 수학적 인식의 특성: 개념의 구성)

  • Yim, Jae-Hoon
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.16 no.1
    • /
    • pp.1-19
    • /
    • 2012
  • Kant defines mathematical cognition as the cognition by reason from the construction of concepts. In this paper, I inquire the meaning and the characteristics of the construction of concepts based on Kant's theory on the sensibility and the understanding. To construct a concept is to exhibit or represent the object which corresponds to the concept in pure intuition apriori. The construction of a mathematical concept includes a dynamic synthesis of the pure imagination to produce a schema of a concept rather than its image. Kant's transcendental explanation on the sensibility and the understanding can be regarded as an epistemological theory that supports the necessity of arithmetic and geometry as common core in human education. And his views on mathematical cognition implies that we should pay more attention to how to have students get deeper understanding of a mathematical concept through the construction of it beyond mere abstraction from sensible experience and how to guide students to cultivate the habit of mind to refer to given figures or symbols as schemata of mathematical concepts rather than mere images of them.

  • PDF

A Study on the instruction of the Infinity Concept with suitable examples - focused on Curriculum of Middle School - (무한 개념의 지도방안과 활용 예제 - 중학교 교육과정을 중심으로 -)

  • Kim, Mee-Kwang
    • The Mathematical Education
    • /
    • v.47 no.4
    • /
    • pp.447-465
    • /
    • 2008
  • The purpose of this study is to suggest effective teaching methods on the concept of infinity for students to obtain the right concept in the middle school curriculum. Many people have thought that infinity is something vouge and unapproachable. But, nowadays it is rather something with a precise definition that lies at the core of modern mathematics. To understand mathematics and science very well, it is necessary to comprehend the concept of infinity. But students tend to figure out the properties of infinite objects and limit concepts only through their experience closely related to finite process, and so they are apt to have their spontaneous intuition and misconception about it. Since most of them have cognitive obstacles in studying the infinite concepts and misconception, mathematics teachers need to help them overcome the obstacles and establish the right secondary intuition for the concepts through good examples and appropriate explanation. In this study, we consider the developing process of the concept of infinity in human history and give some comments and suggestions in teaching methods relative to that concept with new suitable examples.

  • PDF

The Visualization of figures represented by parameters (매개변수로 표현되는 도형의 시각화 방안)

  • 김향숙
    • The Mathematical Education
    • /
    • v.40 no.2
    • /
    • pp.317-333
    • /
    • 2001
  • The equations of figures given by rectangular coordinates are used to look into the properties of them, which are very restricted in examining them in the school mathematics. Therefore, it is quite natural to consider the figures in terms of parameters without restriction to coordinates and also, it is possible for the students to analyze them. Thus, the visualization of figures is important for students in mathematics education. In particular, the teaching-learning methods using computers make loose the difficulties of geometry education, and from the viewpoint that various abstract figures can be visualized and that can be obtained by means of this visualization the learning of figures can be accomplished through the direct experience or control. This study is intended to present concretely the aim and its utility to visualize figures represented as parameters with Mathematics. In this paper, we introduce a new teaching-learning method of figures represented by parameters using Mathematica so that the learners establish themselves their knowledge obtained through their search, investigation, supposition and they accomplish the positive transition to advanced learning. So the leasers extend their ability of sensuous intuition to their ability of logical reasoning through their logical intuition. Consequently they can develop the ability of thinking mathematically, so many natural phenomena and physical ones.

  • PDF

A Study on the Educational Implications of Zeno's Paradoxes through Philosophical Investigation (제논의 역설에 대한 철학적 검토를 통한 교육적 시사점 고찰)

  • Baek, Seung Ju;Choi, Younggi
    • Journal for History of Mathematics
    • /
    • v.33 no.6
    • /
    • pp.327-343
    • /
    • 2020
  • This study investigate philosophical discussions related to the Zeno's paradoxes in order to derive the mathematics educational implications. The paradox of Zeno's motion is sometimes explained by the calculus theories. However, various philosophical discussions show that the resolution of Zeno's paradox by calculus is not a real solution, and the concept of a continuum which is composed of points and the real number continuum may not coincide with the physical space and time. This is supported by the fact that the hyperreal number system of nonstandard analysis could be another model of a straight line or time and that an alternative explanation of Zeno's paradox was possible by the hyperreal number system. The existence of two different theories of the continuum suggests that teachers and students may not have the same view of the continuum. It is also suggested that the real world model used in school mathematics may not necessarily match the student's intuition or mathematical practice, and that the real world application of mathematics theory should be emphasized in education as a kind of 'correspondence.'

On Thinking Ways of Eastern and Western Worlds (동양과 서양의 사고방법에 관한 고찰)

  • REE Sangwook;KOH Youngmee
    • Journal for History of Mathematics
    • /
    • v.37 no.4
    • /
    • pp.79-91
    • /
    • 2024
  • We discuss the thinking ways of the Eastern world and the Western world. In the West, due to the influence of the geometry, deductive logic was incorporated into language, allowing for the development of logic. In contrast, the East relies on intuition, conjecture, and insight as method of thinking. However, these methods of thinking in the East and the West each exhibit their own characteristics. The East saw the flourishing of humanities culture, including philosophy and religion, while the West saw the flourishing of mathematical, scientific, and technological civilizations based on logic.

Analysis of Mathematics Ability Structure in Chinese Mathematical Gifted Student

  • Li Mingzhen;Pang Kun
    • Research in Mathematical Education
    • /
    • v.9 no.4 s.24
    • /
    • pp.329-333
    • /
    • 2005
  • Based on author's practice of instructing Chinese gifted students to join the Chinese Mathematics Olympic (CMO), the paper adopted test analysis model of the Scholastic Aptitude Test of Mathematics (SAT-M), tested mathematics ability of 212 mathematical gifted students to join the CMO, applied correlation analysis and factor analysis and proposed the mathematics ability structure in Chinese gifted students including comprehensive operation ability, logic thinking ability, abstract generalization ability, spatial imagination ability, memory ability, transfer ability and intuition thinking ability. And it analyzed the expression form of these abilities respectively and gave some suggestion on mathematics teaching about gifted Chinese students.

  • PDF

A Study on the Life of Euler and his Academic Achievements in Mathematics (오일러의 생애와 업적에 관한 연구)

  • 노영순;강덕기
    • Journal of the Korean School Mathematics Society
    • /
    • v.1 no.1
    • /
    • pp.69-79
    • /
    • 1998
  • My suggestions to the teachers on the basis of my research are as follows: 1. A mathematical curriculum in high school requires an intuitive understanding. I'm sure we can not only improve the student's intuition and imagination by Euler's insight and intellectual investigation, but also induce motive and interest in mathematical learning by increasing the inquiry activities. Therefore, I suggest that we take advantage of teaching aids available from this research by processing the units in the mathematical textbook. 2. We can feel the beauty of mathematics by Euler's symbols and simple formulas. We must take pride in teaching mathematics because the mathematical insight is very useful in the inqury process. 3. We have to model ourselves after Euler's spirit of inquiry and energetic activities.

  • PDF

Pedagogical implication of Euclid's proof about Pythagorean theorem (피타고라스 정리에 대한 Euclid의 증명이 갖는 교육적 함의)

  • 박문환;홍진곤
    • School Mathematics
    • /
    • v.4 no.3
    • /
    • pp.347-360
    • /
    • 2002
  • This study analyzed the mathematical and didactical contexts of the Euclid's proof about Pythagorean theorem and compared with the teaching methods about Pythagorean theorem in school mathematics. Euclid's proof about Pythagorean theorem which does not use the algebraic methods provide students with the spatial intuition and the geometric thinking in school mathematics. Furthermore, it relates to various mathematical concepts including the cosine rule, the rotation, and the transfor-mation which preserve the area, and so forth. Visual demonstrations can help students analyze and explain mathematical relationship. Compared with Euclid's proof, Algebraic proof about Pythagorean theorem is very simple and it supplies the typical example which can give the relationship between algebraic and geometric representation. However since it does not include various spatial contexts, it forbid many students to understand Pythagorean theorem intuitively. Since both approaches have positive and negative aspects, reciprocal complementary role is required in pedagogical aspects.

  • PDF

Study on Pardies' 《ELEMENS DE GEOMETRIE》 (Pardies의 《기하 원론》 탐구)

  • Chang, Hyewon
    • Journal for History of Mathematics
    • /
    • v.31 no.6
    • /
    • pp.291-313
    • /
    • 2018
  • This study aims to analyze Pardies' ${\ll}$Elements of geometry${\gg}$. This book is very interesting from the perspectives of mathematical history as well as of mathematical education. Because it was used for teaching Kangxi emperor geometry in the Qing Dynasty in China instead of Euclid's which was considered as too difficult to study geometry. It is expected that this book suggests historical and educational implications because it appeared in the context of instruction of geometry in the seventeenth century of mathematical history. This study includes the analyses on the contents of Pardies' ${\ll}$Elements of geometry${\gg}$, the author's advice for geometry learning, several geometrical features, and some features from the view of elementary school mathematics, of which the latter two contain the comparisons with other authors' as well as school mathematics. Moreover, some didactical implications were induced based on the results of the study.