References
- Baek S. J., Choi Y. G., Zeno' Paradox from the Paradigms of Standard Analysis and Nonstandard Analysis, School Mathematics 20(2) (2018), 307-318. https://doi.org/10.29275/sm.2018.06.20.2.307
- Baek S. J., Choi Y. G., A Historical and Mathematical Study on Continuum - Focusing on the Composition and Infinite Division-, Journal of Educational Research in Mathematics 30(4) (2020), 575-599. https://doi.org/10.29275/jerm.2020.11.30.4.575
- J. L. Bell, The Continuous and the Infinitesimal in Mathematics and Philosophy, Polimetrica, 2005.
- M. Black, Achilles and the Tortoise, Analysis 11(5) (1951), 91-101. https://doi.org/10.1093/analys/11.5.91
- P. Blszczyk, M. G. Katz, D. Sherry, Ten Misconceptions from the History of Analysis and Their Debunking, Foundations of Science 18(1) (2013), 43-74. https://doi.org/10.1007/s10699-012-9285-8
- F. Cajori, The Purpose of Zeno's Arguments on Motion, Isis 3(1) (1920), 7-20. https://doi.org/10.1086/357889
- B. Dainton, Time and Space, Acumen, 2010.
- R. Ely, Student Obstacles and Historical Obstacles to Foundational Concepts of Calculus, Dissertation of the Doctor of Philosophy in the University of Wisconsin-Madison, 2007.
- Go S. E. et al., High School Textbook of Calculus. Sinsago, 2019.
- Han D. H., Zeno's Re-examination, School Mathematics 2(1) (2000), 243-257.
- T. L. Heath, The Thirteen Books of Euclid's Elements, Cambridge University Press, 1956. 이무현 역, 기하학 원론-평면기하, 교우사, 1998.
- Hwang S. W. et al., High School Textbook of Calculus, Mirae-n, 2019.
- H. J. Keisler, Foundations of infinitesimal calculus, 2009, http://www.enzoexposito.it/Analisi_Non_Standard/Keisler_Elementary_Calculus_Foundations.pdf(Jan. 10. 2019).
- P. Kitcher, The Nature of Mathematical Knowledge, Oxford University Press, 1984.
- Lee D. G., A Study on the Students' Process of Solving Zeno' Paradox Task(Half Paradox and Achilles Paradox) Based on the Analysis of Students's Expressions, School Mathematics 21(2) (2019), 391-417. https://doi.org/10.29275/sm.2019.06.21.2.391
- Lee J. Y. et al, High School Textbook of Calculus, Chunjae Education, 2019.
- G. Longo, The Mathematical Continuum, from Intuition to Logic, In Naturalizing Phenomenology: Issues in Comtemporary Phenomenology and Cognitive Sciences (J. Petitot, F. J. Varela, B. Pachoud, J. Roy eds.), Stanford University Press, 1999.
- W. I. McLaughlin, S. L. Miller, An Epistemological Use of Nonstandard Analysis to Answer Zeno's Objections against Motion, Synthese 92(3) (1992), 371-384. https://doi.org/10.1007/BF00414288
- National Institute of Korean Language, Standard Korean Language Dictionary, https://stdict.korean.go.kr/search/searchView.do?word_no=452458&searchKeywordTo=3 (Dec,.15.2020).
- W. C. Salmon, Space, Time, and Motion: A Philosophical Introduction, University of Minnesota Press, 1980.
- W. C. Salmon, Zeno's Paradoxes, Hackett Publishing Company, 2001.
- A. Sfard, Mathematical Practices, Anomalies and Classroom Communications Problems., In Constructing Mathematical Knowledge: Epistemology and Mathematics Education (P. Ernest, ed.), The Falmer Press, 1994, 248-273.
- S. Shapiro, Philosophy of Mathematics: Structure and Ontology, Oxford University Press, 1997.
- H. Stein, Logos, Logic, and Logistike: Some Philosophical Remarks on Nineteenth-Century Transformation of Mathematics., In History and Philosophy of Modern Mathematics (W. Aspray, & P, Kitcher ed.), University of Minnesota Press, 238-259. 1988.
- D. Tall, Mathecatical Intuition, with Special Reference to Limiting Processes, Proceedings of the Fourth International Conference for the Psychology of Mathematics Education, Berkeley, 1980, 170-176.
- D. Tall, Advanced Mathematical Thinking, Kluwer Academic Publishers, 1991. 류희찬, 조완영, 김인수 역, 고등수학적 사고, 경문사, 2003.
- J. F. Thomson, Tasks and Super-tasks, Analysis 15(1) (1954) 1-13. https://doi.org/10.1093/analys/15.1.1
- H. Weyl, The Continuum: a Critical Examination of the Foundation of Analysis, Courier Corporation, 1994.