• Title/Summary/Keyword: mathematical algorithms

Search Result 588, Processing Time 0.031 seconds

An Analysis on the Elementary Preservice Mathematics Teachers′ Representation about Fraction (초등수학 예비교사들의 분수에 대한 표상의 분석)

  • 이대현;서관석
    • Education of Primary School Mathematics
    • /
    • v.7 no.1
    • /
    • pp.31-41
    • /
    • 2003
  • Representation has been main topic in teaching and learning mathematics for a long time. Moreover, teachers' deficiency of representation about fraction results in teaching algorithms without conceptual understanding. So, this paper was conducted to investigate and analysize the elementary preservice mathematics teachers' representation about fraction. 38 elementary preservice mathematics teachers participated in this study. This study results showed that, the only model of a fraction that was familiar to the preservice teachers was the part of whole one. And research showed that, they solved the problems about fraction well using algorithms but seldom express the sentence which illustrates the meaning of the operation by a fraction. Specially, the division aspect of a fraction was not familiar nor readily accepted. It menas that preservice teachers are used to using algorithms without a conceptual understanding of the meaning of the operation by a fraction. This results give us some implications. Most of all, teaching programs in preservice mathematics teachers education have to devise to form a network among the concepts in relation to fraction. And we must emphasize how to teach and what to teach in preservice mathematics teachers education course. Finally, we have to invent the various materials which can be used to educate both preservice teachers and elementary school students. If we want to improve the mathematical ability of students, we will concentrate preservice teachers education.

  • PDF

CoReHA: conductivity reconstructor using harmonic algorithms for magnetic resonance electrical impedance tomography (MREIT)

  • Jeon, Ki-Wan;Lee, Chang-Ock;Kim, Hyung-Joong;Woo, Eung-Je;Seo, Jin-Keun
    • Journal of Biomedical Engineering Research
    • /
    • v.30 no.4
    • /
    • pp.279-287
    • /
    • 2009
  • Magnetic resonance electrical impedance tomography (MREIT) is a new medical imaging modality providing cross-sectional images of a conductivity distribution inside an electrically conducting object. MREIT has rapidly progressed in its theory, algorithm and experimental technique and now reached the stage of in vivo animal and human experiments. Conductivity image reconstructions in MREIT require various steps of carefully implemented numerical computations. To facilitate MREIT research, there is a pressing need for an MREIT software package with an efficient user interface. In this paper, we present an example of such a software, called CoReHA which stands for conductivity reconstructor using harmonic algorithms. It offers various computational tools including preprocessing of MREIT data, identification of boundary geometry, electrode modeling, meshing and implementation of the finite element method. Conductivity image reconstruction methods based on the harmonic $B_z$ algorithm are used to produce cross-sectional conductivity images. After summarizing basics of MREIT theory and experimental method, we describe technical details of each data processing task for conductivity image reconstructions. We pay attention to pitfalls and cautions in their numerical implementations. The presented software will be useful to researchers in the field of MREIT for simulation as well as experimental studies.

Fast Binary Block Inverse Jacket Transform

  • Lee Moon-Ho;Zhang Xiao-Dong;Pokhrel Subash Shree;Choe Chang-Hui;Hwang Gi-Yean
    • Journal of electromagnetic engineering and science
    • /
    • v.6 no.4
    • /
    • pp.244-252
    • /
    • 2006
  • A block Jacket transform and. its block inverse Jacket transformn have recently been reported in the paper 'Fast block inverse Jacket transform'. But the multiplication of the block Jacket transform and the corresponding block inverse Jacket transform is not equal to the identity transform, which does not conform to the mathematical rule. In this paper, new binary block Jacket transforms and the corresponding binary block inverse Jacket transforms of orders $N=2^k,\;3^k\;and\;5^k$ for integer values k are proposed and the mathematical proofs are also presented. With the aid of the Kronecker product of the lower order Jacket matrix and the identity matrix, the fast algorithms for realizing these transforms are obtained. Due to the simple inverse, fast algorithm and prime based $P^k$ order of proposed binary block inverse Jacket transform, it can be applied in communications such as space time block code design, signal processing, LDPC coding and information theory. Application of circular permutation matrix(CPM) binary low density quasi block Jacket matrix is also introduced in this paper which is useful in coding theory.

A Branch-and-price Algorithm for the Minimum ADM Problem on WDM Ring Networks (WDM 링에서의 ADM 최소화 문제에 대한 분지평가 해법)

  • Chung, Ji-Bok
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.32 no.4
    • /
    • pp.51-60
    • /
    • 2007
  • In this study, we consider the minimum ADM problem which is the fundamental problem for the cost-effective design of SONET ADM embedded in WDM ring networks. To minimize the number of SONET ADMs, efficient algorithms for the routing and wavelength assignment are needed. We propose a mathematical model based on the graph theory for the problem and propose a branch-and-price approach to solve the suggested model effectively within reasonable time. By exploiting the mathematical structure of ring networks, we developed polynomial time algorithms for column generation subroutine at branch-and-bound tree. In a computer simulation study, the suggested approach can find the optimal solution for sufficient size networks and shows better performance than the greedy heuristic method.

NEW COMPLEXITY ANALYSIS OF PRIMAL-DUAL IMPS FOR P* LAPS BASED ON LARGE UPDATES

  • Cho, Gyeong-Mi;Kim, Min-Kyung
    • Bulletin of the Korean Mathematical Society
    • /
    • v.46 no.3
    • /
    • pp.521-534
    • /
    • 2009
  • In this paper we present new large-update primal-dual interior point algorithms for $P_*$ linear complementarity problems(LAPS) based on a class of kernel functions, ${\psi}(t)={\frac{t^{p+1}-1}{p+1}}+{\frac{1}{\sigma}}(e^{{\sigma}(1-t)}-1)$, p $\in$ [0, 1], ${\sigma}{\geq}1$. It is the first to use this class of kernel functions in the complexity analysis of interior point method(IPM) for $P_*$ LAPS. We showed that if a strictly feasible starting point is available, then new large-update primal-dual interior point algorithms for $P_*$ LAPS have $O((1+2+\kappa)n^{{\frac{1}{p+1}}}lognlog{\frac{n}{\varepsilon}})$ complexity bound. When p = 1, we have $O((1+2\kappa)\sqrt{n}lognlog\frac{n}{\varepsilon})$ complexity which is so far the best known complexity for large-update methods.

GENERAL NONLINEAR RANDOM SET-VALUED VARIATIONAL INCLUSION PROBLEMS WITH RANDOM FUZZY MAPPINGS IN BANACH SPACES

  • Balooee, Javad
    • Communications of the Korean Mathematical Society
    • /
    • v.28 no.2
    • /
    • pp.243-267
    • /
    • 2013
  • This paper is dedicated to study a new class of general nonlinear random A-maximal $m$-relaxed ${\eta}$-accretive (so called (A, ${\eta}$)-accretive [49]) equations with random relaxed cocoercive mappings and random fuzzy mappings in $q$-uniformly smooth Banach spaces. By utilizing the resolvent operator technique for A-maximal $m$-relaxed ${\eta}$-accretive mappings due to Lan et al. and Chang's lemma [13], some new iterative algorithms with mixed errors for finding the approximate solutions of the aforesaid class of nonlinear random equations are constructed. The convergence analysis of the proposed iterative algorithms under some suitable conditions are also studied.

A SYSTEM OF NONLINEAR SET-VALUED IMPLICIT VARIATIONAL INCLUSIONS IN REAL BANACH SPACES

  • Bai, Chuanzhi;Yang, Qing
    • Communications of the Korean Mathematical Society
    • /
    • v.25 no.1
    • /
    • pp.129-137
    • /
    • 2010
  • In this paper, we introduce and study a system of nonlinear set-valued implicit variational inclusions (SNSIVI) with relaxed cocoercive mappings in real Banach spaces. By using resolvent operator technique for M-accretive mapping, we construct a new class of iterative algorithms for solving this class of system of set-valued implicit variational inclusions. The convergence of iterative algorithms is proved in q-uniformly smooth Banach spaces. Our results generalize and improve the corresponding results of recent works.

ESTIMATING THE DOMAIN OF ATTRACTION VIA MOMENT MATRICES

  • Li, Chunji;Ryoo, Cheon-Seoung;Li, Ning;Cao, Lili
    • Bulletin of the Korean Mathematical Society
    • /
    • v.46 no.6
    • /
    • pp.1237-1248
    • /
    • 2009
  • The domain of attraction of a nonlinear differential equations is the region of initial points of solution tending to the equilibrium points of the systems as the time going. Determining the domain of attraction is one of the most important problems to investigate nonlinear dynamical systems. In this article, we first present two algorithms to determine the domain of attraction by using the moment matrices. In addition, as an application we consider a class of SIRS infection model and discuss asymptotical stability by Lyapunov method, and also estimate the domain of attraction by using the algorithms.

WEAK AND STRONG CONVERGENCE THEOREMS FOR AN ASYMPTOTICALLY k-STRICT PSEUDO-CONTRACTION AND A MIXED EQUILIBRIUM PROBLEM

  • Yao, Yong-Hong;Zhou, Haiyun;Liou, Yeong-Cheng
    • Journal of the Korean Mathematical Society
    • /
    • v.46 no.3
    • /
    • pp.561-576
    • /
    • 2009
  • We introduce two iterative algorithms for finding a common element of the set of fixed points of an asymptotically k-strict pseudo-contraction and the set of solutions of a mixed equilibrium problem in a Hilbert space. We obtain some weak and strong convergence theorems by using the proposed iterative algorithms. Our results extend and improve the corresponding results of Tada and Takahashi [16] and Kim and Xu [8, 9].

SENSITIVITY ANALYSIS OF SOLUTIONS FOR A SYSTEM OF PARAMETRIC GENERAL QUASIVARIATIONAL-LIKE INEQUALITIES

  • Hao, Yan;Kang, Shin-Min
    • East Asian mathematical journal
    • /
    • v.24 no.2
    • /
    • pp.177-186
    • /
    • 2008
  • In this paper, we introduce and study a new class of system of parametric general quasivariational-like inequalities. Using $\eta$-subdifferential and $\eta$-proximal mappings of proper functionals in Hilbert spaces, we prove the equivalence between the system of parametric general quasivariational-like inequalities and a xed point problem and construct two iterative algorithms. A few existence and uniqueness results as well as the sensitivity analysis of solutions are also established for the system of parametric general quasivariational-like inequalities, and some convergence results of iterative sequence generated by the algorithms are proved. Our results extend a few known results in the literature.

  • PDF