• Title/Summary/Keyword: marine macro-algae

Search Result 19, Processing Time 0.021 seconds

Anti-melanogenesis activity of Ecklonia cava extract cultured in tanks with magma seawater of Jeju Island

  • Ding, Yuling;Kim, So Hui;Lee, Jeong Jun;Hong, Jin Tae;Kim, Eun-A;Kang, Do-Hyung;Heo, Soo-Jin;Lee, Seung-Hong
    • ALGAE
    • /
    • v.34 no.2
    • /
    • pp.177-185
    • /
    • 2019
  • Ecklonia cava is popular in Korea as a marine functional materials. E. cava is generally collected and used on the coast of Jeju Island. However, the continuous use of collected natural E. cava may be limited because difficult to secure throughout the year and may be exposed to environmental pollution. Jeju magma seawater (MSW) was known to be significant advantages such as safety, cleanness, stability, and functional improvement. Attempts have been reported on application of MSW to the culturing of macro- and microalgae and showed improved results. Thus, the objective of the present study was to explore the anti-melanogenesis activity of brown seaweed E. cava (E. cava cultured with MSW [MSWE]) extract cultured in tanks with MSW of Jeju Island to evaluate the possibility of cosmeceutical industrial application. MSWE extract showed the higher polyphenolic and dieckol contents than natural E. cava (NE) extract. Anti-melanogenesis activity of MSWE extract and NE extract are tested and compared using tyrosinase and dihydroxyphenylalanine (DOPA) oxidation inhibition assay. MSWE extracts evidenced more effective tyrosinase and DOPA oxidation inhibition activity than that of the NE extracts and the commercial whitening agent, arbutin. MSWE extracts also markedly inhibited melanin synthesis and decreased the expression of melanogenesis-related protein in ${\alpha}$-melanocyte stimulating hormone-stimulated B16F10 melanoma cells without cytotoxicity. These results suggest that MSW cultivation process would be more effective in releasing bioactive compounds with whitening effect from seaweed such as E. cava at an industrial scale.

The influence of marine algae on iodine speciation in the coastal ocean

  • Carrano, Mary W.;Yarimizu, Kyoko;Gonzales, Jennifer L.;Cruz-Lopez, Ricardo;Edwards, Matthew S.;Tymon, Teresa M.;Kupper, Frithjof C.;Carrano, Carl J.
    • ALGAE
    • /
    • v.35 no.2
    • /
    • pp.167-176
    • /
    • 2020
  • Iodine exists as a trace element in seawater, with total iodine being generally constant at about 0.45-0.55 μM. Almost all of this iodine occurs in two main forms: iodate and iodide. Iodate is the thermodynamically stable form under normal seawater conditions, and thus should be the only iodine-containing species in the water column. However, iodate concentrations are found to vary considerably, being generally greater at depth and lower at the surface, while iodide concentrations follow the reverse pattern, being anomalously accumulated in the euphotic zone and decreasing with depth. The fact that iodide concentrations follow a depth dependence corresponding to the euphotic zone suggests that biological activity is the source of the reduced iodine. Nonetheless, the nature and source of iodate reduction activity remains controversial. Here, using a combination of field and laboratory studies, we examine some of the questions raised in our and other previous studies, and seek further correlations between changes in iodine speciation and the presence of marine macro- and microalgae. The present results indicate that microalgal growth per se does not seem to be responsible for the reduction of iodate to iodide. However, there is some support for the hypothesis that iodate reduction can occur due to release of cellular reducing agents that accompany cell senescence during phytoplankton bloom declines. In addition, support is given to the concept that macroalgal species such as giant kelp (Macrocystis pyrifera) can take up both iodide and iodate from seawater (albeit on a slower time scale). We propose a mechanism whereby iodate is reduced to iodide at the cell surface by cell surface reductases and is taken up directly as such without reentering the bulk solution.

Real-time Monitoring of Environmental Properties at Seaweed Farm and a Simple Model for CO2 Budget (해조양식장 수질환경 모니터링을 통한 이산화탄소 단순 수지모델)

  • Shim, Jeong Hee;Kang, Dong-Jin;Han, In Sung;Kwon, Jung No;Lee, Yong-Hwa
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.17 no.4
    • /
    • pp.243-251
    • /
    • 2012
  • Real-time monitoring for environmental factors(temperature, salinity, chlorophyll, etc.) and carbonate components( pH and $fCO_2$) was conducted during 5-6th of July, 2012 at a seaweeds farm in Gijang, Busan. Surface temperature and salinity were ranged from $12.5{\sim}17.6^{\circ}C$ and 33.7~34.0, respectively, with highly daily and inter-daily variations due to tide, light frequency(day and night) and currents. Surface $fCO_2$ and pH showed a range of $381{\sim}402{\mu}atm$ and 8.03~8.15, and chlorophyll-a concentration in surface seawater ranged 0.8~5.8 ${\mu}g\;L^{-1}$. Environmental and carbonate factors showed the highest/lowest values around 5 pm of 5th July when the lowest tidal height and strongest thermocline in the water column, suggesting that biological production resulted in decrease of $CO_2$ and increase of pH in the seaweed farm. Processes affecting the surface $fCO_2$ distribution were evaluated using a simple budget model. In day time, biological productions by phytoplankton and macro algae are the main factors for $CO_2$ drawdown and counteracted the amount of $CO_2$ increase by temperature and air-sea exchange. The model values were a little higher than observed values in night time due to the over-estimation of physical mixing. The model suggested that algal production accounted about 14-40% of total $CO_2$ variation in seaweed farm.

Valorization of galactose into levulinic acid via acid catalysis

  • Kim, Hyo Seon;Jeong, Gwi-Taek
    • Korean Journal of Chemical Engineering
    • /
    • v.35 no.11
    • /
    • pp.2232-2240
    • /
    • 2018
  • We applied methanesulfonic acid (MSA) as a green catalyst to produce levulinic acid (LA) from monomeric sugars. To optimize reaction factors and assess the effect of reciprocal interactions, a statistical experimental design was applied. Optimized result of 40.7% LA yield was obtained under the following conditions: 60 g/L galactose, 0.4 M MSA at $188^{\circ}C$ for 26.7 min. On the other hand, 66.1% LA yield was achieved under 60 g/L fructose and 0.4 M MSA at $188^{\circ}C$ for 36 min conditions. For the effect of combined severity factor on the LA yield from galactose, the LA yield showed a peaked pattern, which was linearly increased until a CSF 3.2 and then diminished with a high CSF. Moreover, it was closely fitted to a non-linear Gaussian peak pattern with a high regression value of 0.989. These results suggest that MSA and galactose, derived from marine red macro-algae, can potentially be applied for the conversion into platform chemicals.

Steam Reforming of Hydrothermal Liquefaction Liquid from Macro Algae over Ni-K2TixOy Catalysts (Ni-K2TixOy 촉매를 이용한 해조류 유래 수열 액화 원료의 수증기 개질 반응 연구)

  • Park, Yong Beom;Lim, Hankwon;Woo, Hee-Chul
    • Clean Technology
    • /
    • v.23 no.1
    • /
    • pp.104-112
    • /
    • 2017
  • Hydrogen production via steam reforming of liquefaction liquid from marine algae over hydrothermal liquefaction was carried out at 873 ~ 1073 K with a commercial catalyst and Ni based $K_2Ti_xO_y$ added catalysts. Liquefaction liquid obtained by hydrothermal liquefaction (503 K, 2 h) was used as a reactant and comparison studies for catalytic activity over different catalysts (FCR-4-02, $Ni/K_2Ti_xO_y-Al_2O_3$, $Ni/K_2Ti_xO_y-SiO_2$, $Ni/K_2Ti_xO_y-ZrO_2/CeO_2$ and Ni/$K_2Ti_xO_y$-MgO), reaction temperature were performed. Experimental results showed Ni/$K_2Ti_xO_y$ based catalysts ($Ni/K_2Ti_xO_y-Al_2O_3$, $Ni/K_2Ti_xO_y-SiO_2$, Ni/$K_2Ti_xO_y-ZrO_2$/ $CeO_2$ and Ni/$K_2Ti_xO_y$-MgO) have a higher activity than commercial catalyst (FCR-4-02) and In particular, a product composition was different depending on support materials. An acidic support ($Al_2O_3$) and a basic support (MgO) led to a higher selectivity for CO while a neutral support ($SiO_2$) and a reducing support ($ZrO_2/CeO_2$) resulted in a higher $CO_2$ selectivity due to water gas shift reaction.

Sedimentary and Benthic Environment Characteristics in Macroalgal Habitats of the Intertidal Zone in Hampyeong Bay (함평만 조간대 해조류 분포지역의 퇴적 및 저서환경 특성)

  • Hwang, Dong-Woon;Koh, Byoung-Seol
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.45 no.6
    • /
    • pp.694-703
    • /
    • 2012
  • To understand the characteristics of sedimentary and benthic environments in habitats of naturally-occurring intertidal benthic macroalgae, various geochemical parameters of sediment (grain size, ignition loss [IL], chemical oxygen demand [COD], and acid volatile sulfur [AVS]) and pore water (temperature, salinity, pH, and nutrients) were measured in the southern intertidal zone of Hampyeong Bay at two month intervals from April to October 2009. Ecological characteristics including the distribution and biomass of benthic macroalgae were also investigated. Benthic macroalgae were distributed below 4 to 5 m depth from mean sea level near the lower portion of the intertidal zone where air exposure time is relatively short. The distribution area and biomass of benthic macroalgae gradually decreased during the study period. The surface sediments in the benthic algal region were mainly composed of finer sediments, such as slightly gravelly mud and mud. The temperature, salinity, pH, and nutrient concentrations (except dissolved inorganic nitrogen) in pore water did not differ in regions with and without benthic macroalgae, whereas the mean grain size and the concentrations of IL, COD, and AVS in sediments were much higher in regions harboring benthic macroalgae. The correlation between mean grain size and IL in sediments displayed two distinct gradients and the slope was much steeper in regions harboring benthic macroalgae, indicating that the content of organic matter in benthic algal region is not solely dependent on mean grain size. Our results indicate that the benthic macroalgae in the southern intertidal zone of Hampyeong Bay play an important role in the accumulation of organic matter in sediment.

Production of Levulinic Acid from Chitosan by Acidic-Hydrothermal Reaction (산성 수열반응을 통한 키토산으로부터 레불린산의 생산)

  • Jeong, Gwi-Taek
    • Korean Chemical Engineering Research
    • /
    • v.52 no.3
    • /
    • pp.355-359
    • /
    • 2014
  • Recently, many chemicals produced from renewable resources such as lignocellulosics, micro-algae and marine macro-algae, were introduced to chemical industry. Chitin/chitosan is secondly abundant feedstock on Earth. It is easily obtained from crusraceans' shells such as crab, shrimp and insects. In this work, we performed the acidic-hydrothermal hydrolysis to produce levulinic acid from chitosan using statistical approach. By design of response surface methodology, the effect of reaction temperature, catalyst amount, and reaction time and their reciprocal interactions were investigated. As a result, higher reaction temperature and catalyst amount increased the higher concentration of levulinic acid. However, reaction time did not caused large increase of levulinic acid after some reaction period. Levulinic acid of 2.7 g/L produced from chitosan in the optimized condition of reaction temperature of $175^{\circ}C$, sulfuric acid of 2.4% and reaction time of 40.7 min.

Effect of Reaction Factors on Reducing Sugar Production from Enteromorpha intestinalis Using Solid Acid Catalyst (고체 산촉매를 이용한 창자파래로부터 환원당 생산에 미치는 인자들의 영향)

  • Jeong, Gwi-Taek;Park, Don-Hee
    • Korean Chemical Engineering Research
    • /
    • v.53 no.4
    • /
    • pp.478-481
    • /
    • 2015
  • In this study, the hydrolysis of green macro-algae Enteromorpha intestinalis using solid acid catalyst was conducted to obtain total reducing sugar. The hydrolysis was optimized with four reaction parameters of liquid-to-solid (L/S) ratio, catalyst amount, reaction temperature, and reaction time. As a optimized result, the highest TRS of 7.74 g/L was obtained under condition of 7.5 L/S ratio, $140^{\circ}C$, 15% catalyst amount and 2 hr. By the way, at this condition, only 0.13 g/L 5-HMF was detected. The solid acid-catalyzed hydrolysis of marine resources had the potential in the field of bioenergy.

The larval development of Paramphiascella vararensis(T. Scott) (Copepoda: Harpacticoida: Diosaccidae) reared in laboratory: II. Larvae development of copepodid stages (요각류 Paramphiascella vararensis(T, Scott) (Harpacticoida: Diosaccidae)의 유생 발생: II. copepodid 유생의 발생)

  • Jung, Min-Min;Lee, Hwa-Ja;Kim, Hyeung-Sin
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.5 no.3
    • /
    • pp.238-244
    • /
    • 2000
  • The complete postembryonic developments of copepodid stages of Paramphiascella vararensis T. Scott(Copepoda: Harpacticoida) are described and illustrated based on specimens cultured in laboratory. The copepodites of P. vararensis feed on powder of one of green macro-algae species Ulva pertusa. Developmental time from copepodid stage to adult (copepodid stage) is about 15 days with culture conditions of 33-34 ppt of salinity, 22-23$^{\circ}$C of temperature and feed on algae powder. Sexual characters of the species are distinct on the copepodid stage. Sexual characters appear in size, antennule, pereiopods of second and bases of the fifth and sixth legs. Males are considerably smaller than females in size. In the antennule, the fourth segment of the male extremely is modified and swollen for female. In the segment number of the endopod of second pereiopod, female has 3 segments while male bears 2 segments. The female has 3 setae while the male bears 2 setae on the inner lobe of basis of fifth leg. In the basis of sixth leg, the female has 2 setae while the male has 3 setae.

  • PDF