DOI QR코드

DOI QR Code

Real-time Monitoring of Environmental Properties at Seaweed Farm and a Simple Model for CO2 Budget

해조양식장 수질환경 모니터링을 통한 이산화탄소 단순 수지모델

  • 심정희 (국립수산과학원 어장환경과) ;
  • 강동진 (한국해양과학기술원 기기검교정센터) ;
  • 한인성 (국립수산과학원 수산해양종합정보과) ;
  • 권정노 (국립수산과학원 어장환경과) ;
  • 이용화 (국립수산과학원 남서해수산연구소)
  • Received : 2012.10.10
  • Accepted : 2012.11.22
  • Published : 2012.11.30

Abstract

Real-time monitoring for environmental factors(temperature, salinity, chlorophyll, etc.) and carbonate components( pH and $fCO_2$) was conducted during 5-6th of July, 2012 at a seaweeds farm in Gijang, Busan. Surface temperature and salinity were ranged from $12.5{\sim}17.6^{\circ}C$ and 33.7~34.0, respectively, with highly daily and inter-daily variations due to tide, light frequency(day and night) and currents. Surface $fCO_2$ and pH showed a range of $381{\sim}402{\mu}atm$ and 8.03~8.15, and chlorophyll-a concentration in surface seawater ranged 0.8~5.8 ${\mu}g\;L^{-1}$. Environmental and carbonate factors showed the highest/lowest values around 5 pm of 5th July when the lowest tidal height and strongest thermocline in the water column, suggesting that biological production resulted in decrease of $CO_2$ and increase of pH in the seaweed farm. Processes affecting the surface $fCO_2$ distribution were evaluated using a simple budget model. In day time, biological productions by phytoplankton and macro algae are the main factors for $CO_2$ drawdown and counteracted the amount of $CO_2$ increase by temperature and air-sea exchange. The model values were a little higher than observed values in night time due to the over-estimation of physical mixing. The model suggested that algal production accounted about 14-40% of total $CO_2$ variation in seaweed farm.

부산시 기장군 일광 해조류양식장에서 2011년 7월 5일부터 6일까지 약 30시간동안 해양 표층수의 수온, 염분 등의 환경인자와 pH와 이산화탄소분압($fCO_2$)을 연속 관측하였다. 표층수의 수온과 염분은 $12.5{\sim}17.6^{\circ}C$, 33.7~34.0범위를 보였으며, 조석과 광주기, 해류 등의 영향으로 일변화 및 일간변화를 크게 나타내었다. 이산화탄소분압과 pH는 381~402 ${\mu}atm$, 8.03~8.15범위를 보였으며, 엽록소는 0.8~5.8 ${\mu}g\;L^{-1}$ 범위를 보였다. 이산화탄소분압, pH 그리고 엽록소는 최대 간조와 성층이 강했던 5일 오후 5시 전후에 최소 및 최고치를 보였으며, 이는 엽록소에 의한 생물생산 결과 이산화탄소는 낮고 pH는 높아진 것을 의미한다. 해조양식장 이산화탄소변화에 대한 단순 수지모델을 적용한 결과, 낮에는 생물생산에 의한 감소가 수온상승, 대기와의 교환에 의한 증가와 상쇄하는 것으로 나타났으며, 밤에는 대기와의 교환 물리적 혼합에 대한 과대 평가로 관측치보다 다소 높게 나타났다. 모델결과는 해조양식장 이산화탄소분압 총변화량의 14~40%는 해조류의 일차생산에 의한 것으로 나타났다.

Keywords

References

  1. Abreu, M.H., R. Pereira, C. Yarish, A.H. Buschmann and I. Sousa- Pinto, 2011. IMTA with Gracilaria vermiculophylla: Productivity and nutrient removal performance of the seaweed in a land-based pilot scale system. Aquaculture, 312: 77-87. https://doi.org/10.1016/j.aquaculture.2010.12.036
  2. Ale, M.T., J.D. Mikkelsen and A.S. Meyer, 2010. Differential growth response of Ulva lactuca to ammonium and nitrate assimilation, J Appl Phycol DOI 10.1007/s10811-010-9546-2.
  3. de Baar, H.J.W., J.T.M. de Jong, D.C.E. Bakker, B.M. Lscher, C. Veth, U.V. Bathmann and V. Smetacek, 1995. Importance of iron for plankton blooms and carbon dioxide drawdown in the Southern Ocean. Nature, 373: 412-415. https://doi.org/10.1038/373412a0
  4. Bakker, D.C.E., J.J.W. de Baar and U.V. Bathmann, 1997. Changes of carbon dioxide in surface waters during spring in the Southern Ocean. Deep-Sea Research II, 44(1-2): 91-127. https://doi.org/10.1016/S0967-0645(96)00075-6
  5. Chipman, D., J. Marra and T. Takahashi, 1993. Primary production at $47^{\circ}$ N and $20^{\circ}$ W in the North Atlantic Ocean: a comparison between $^{14}C$ incubation method and the mixed layer carbon budget. Deep-Sea Research I, 40: 151-169. https://doi.org/10.1016/0967-0637(93)90058-B
  6. Hwang, J.R., J. Shim, J.B. Kim, S.Y. Kim and Y.H. Lee, 2011. Variations in nutrients & $CO_{2}$ uptake rates and photosynthetic characteristics of Saccharina japonica) from the south coast of Korea. Journal of the Korean Society of Oceanography, 16(4): 196-205. https://doi.org/10.7850/jkso.2011.16.4.196
  7. Kim Y.-D., J.-P. Hong, H.-I. Song, C.-Y. Jeon, S.-K. Kim, Y.-S., Son, H.-K. Han, D.-S., Kim, J.-H. Kim, M.-R. Kim, Y.-G. Gong and D.-K. Kim, 2007. Growth and maturation of Laminaria japonica transplanted for seaforest construction on barren ground. J. Kor. Fish. Soc., 40: 323-331. https://doi.org/10.5657/kfas.2007.40.5.323
  8. Klenell, M., P. Snoeijs, and M. Pedersen, 2004. Active carbon uptake in Laminaria digitata and L. saccharina (Phaeophyta) is driven by a proton pump in the plasma membrane, Hydrobiologia, 514: 41-53. https://doi.org/10.1023/B:hydr.0000018205.80186.3e
  9. KORDI, 2010. Guide to best practices for ocean $CO_{2}$ measurements. pp. 73-90.
  10. Lee, K.Y. and C.H. Sohn, 1993. Morphological characteristics and growth of two forms of sea mstard, Undaria pinnatifida f. distans and U. pinnatifida f. typica. Journal of Aquaculture, 6(2): 71-87.
  11. Lewis, E. and D.W.R. Wallace, 1998. Program Developed for $CO_{2}$ system calculations. http://cdiac.esd.ornl.gov/oceans/co2rprt.html.
  12. Louanchi, F., N. Metzl and A. Poisson, 1996. Modelling the monthly sea surface f$CO_{2}$ fields in the Indian Ocean. Marine Chemistry, 55: 265-279. https://doi.org/10.1016/S0304-4203(96)00066-7
  13. MIFAFF, 2010. The report of development of sea forest in 2009, pp. 628.
  14. MLTM, 2010. Standards of analysis methods for marine environments. pp. 50-100.
  15. Na, T., T. Lee, I. Chung and J. Lee, 2010. Modelling seaweed carbon uptake. In: "Climate change, seaweed and $CO_{2}$ sequestration" International Symposium. Greenhouse Gas Emissions Reduction using Seaweeds. January 29, 2010, Pusan National University.
  16. Neori, A., M.D. Krom, S.P. Ellner, C.E. Boyd, D. Popper, R. Rabinovitch, P.J. Davison, O. Dvir, D. Zuber, M. Ucko, D. Angel and H. Gordin, 1996. Seaweed biofilters as regulators of water quality in integrated fish-seaweed culture units. Aquaculture, 141: 183-199. https://doi.org/10.1016/0044-8486(95)01223-0
  17. Neori, A., M. Shpigel and D. Ben-Ezra, 2000. A sustainable integrated system for culture of fish, seaweed and abalone, Aquaculture, 186: 279-291. https://doi.org/10.1016/S0044-8486(99)00378-6
  18. NFRDI, 2009. Research on assessments of primary production and decomposition of organic matter in coastal farms. pp. 83.
  19. Ozaki, A., H. Mizuta and H. Yamamoto, 2001. Physiological differences between the nutrient uptakes of Kjellmaniella crassifolia and Laminaria japonica (Phaeophyceae). Fisheries Science, 67: 415-419. https://doi.org/10.1046/j.1444-2906.2001.00277.x
  20. Parsons, T.R., Y. Maita and C.M. Lalli, 1984. A manual of chemical and biological methods for seawater analysis. Pergamon Press, Oxford, England, 173pp.
  21. Poisson, A., N. Metzl, C. Brunet, B. Schauer, B. Bres, D. Ruiz-Pino and F. Louanchi, 1993. Variability of sources and sinks of $CO_{2}$ in the western Indian and Southern Oceans during the year 1991. Journal of Geophysical Research, 98: 22759-22778. https://doi.org/10.1029/93JC02501
  22. Rees, T.A.V., 2007. Metabolic and ecological constraints imposed by similar rates of ammonium and nitrate uptake per unit surface area at low substrate concentrations in marine phytoplankton and macroalgae, J. Phycol., 43: 197-207. https://doi.org/10.1111/j.1529-8817.2007.00321.x
  23. Shim, J., D. Kim, Y.C. Kang, J.H. Lee, S.-T. Jang and C.-H. Kim, 2007. Seasonal variations in p$CO_{2}$ and its controlling factors in surface seawater of the northern East China Sea. Continental Shelf Research, 27: 2623-2636. https://doi.org/10.1016/j.csr.2007.07.005
  24. Shim, J., J. R. Hwang, J. S. Lee, J.-H. Kim and S.-S. Kim, 2010. Variations in nutrients and $CO_{2}$ uptake with growth of Undaria pinnatifida from the southe coast of Korea. Kor. J. Fish Aquat. Sci., 43: 679-686.
  25. Simpson, J.H., D.G. Hughes and N.C.G. Morris, 1977. The relation of seasonal stratification to tidal mixing on the continental shelf. Deep Sea Research (Suppl.). In: Angel, M. (Ed.), Voyage of Discovery, pp. 327-340.
  26. Stoll, M.H.C, H. Thomas, H.J.W. De Baar, I. Zondervan, E. De Jong, U.V. Bathmann and E. Fahrbach, 2002. Biological versus physical processes as drivers of large oscillations of the air-sea $CO_{2}$ flux in the Antarctic marginal ice zone during summer. Deep-Sea Research I, 49: 1651-1667. https://doi.org/10.1016/S0967-0637(02)00067-5
  27. Takahashi, T., J. Olafsson, J.G. Goddard, D.W. Chipman and S.C. Sutherland, 1993. Seasonal variations of $CO_{2}$ and nutrients in the high-latitude surface oceans: a comparative study. Global Biogeochemical Cycles, 7(4): 843-878. https://doi.org/10.1029/93GB02263
  28. Wanninkhof, R., 1992. Relationship between wind speed and gas exchange over the ocean. J. Geophys. Res., 97: 7373-7382. https://doi.org/10.1029/92JC00188
  29. Weiss, R.F., 1974. Carbon dioxide in water and seawater: the solubility of a non-ideal gas. Mar. Chem., 2: 203-215. https://doi.org/10.1016/0304-4203(74)90015-2
  30. Weiss, R.F., 1981. Determinations of carbon dioxide and methane by dual catalytist flame ionization chromatography and nitrous oxide by electron capture chromatography, J. of Chemical Science, 19: 610-616.
  31. Zou, D., 2005. Effects of elevated atmospheric $CO_{2}$ on growth, photosynthesis and nitrogen metabolism in the economic brown seaweed, Hizikia fusiforme (Sargassaceae, Phaeophyta). Aquaculture, 250: 726-735. https://doi.org/10.1016/j.aquaculture.2005.05.014