DOI QR코드

DOI QR Code

Production of Levulinic Acid from Chitosan by Acidic-Hydrothermal Reaction

산성 수열반응을 통한 키토산으로부터 레불린산의 생산

  • Jeong, Gwi-Taek (Department of Biotechnology, Pukyong National University)
  • 정귀택 (부경대학교 생물공학과)
  • Received : 2013.11.28
  • Accepted : 2013.12.29
  • Published : 2014.06.01

Abstract

Recently, many chemicals produced from renewable resources such as lignocellulosics, micro-algae and marine macro-algae, were introduced to chemical industry. Chitin/chitosan is secondly abundant feedstock on Earth. It is easily obtained from crusraceans' shells such as crab, shrimp and insects. In this work, we performed the acidic-hydrothermal hydrolysis to produce levulinic acid from chitosan using statistical approach. By design of response surface methodology, the effect of reaction temperature, catalyst amount, and reaction time and their reciprocal interactions were investigated. As a result, higher reaction temperature and catalyst amount increased the higher concentration of levulinic acid. However, reaction time did not caused large increase of levulinic acid after some reaction period. Levulinic acid of 2.7 g/L produced from chitosan in the optimized condition of reaction temperature of $175^{\circ}C$, sulfuric acid of 2.4% and reaction time of 40.7 min.

최근 목질계, 미세조류, 해양 거대조류 등의 재생가능한 자원으로부터 생산된 많은 화학물질들이 화학산업에 도입되고 있다. 키틴/키토산은 지구상에서 두 번째로 풍부한 자원이며, 게, 새우, 곤충과 같은 갑각류의 껍질로부터 얻을 수 있다. 본 연구에서는 키토산으로부터 levulinic acid의 생산을 위하여 고온 산 가수분해와 실험계획법을 적용하여 반응온도, 촉매량, 반응시간의 반응조건을 최적화 하였다. 결과적으로 반응온도와 촉매농도는 높을수록 levulinic acid의 생성이 증가하였고, 반응시간은 일정시간 이후에는 크게 영향을 미치지 못하였다. 최적 반응조건을 조사한 결과, 반응온도 $175^{\circ}C$, 촉매농도 2.4%, 그리고 반응시간 40.7분의 조건에서 2.7 g/L의 levulinic acid를 얻었다.

Keywords

References

  1. Jeong, G. T. and Park, D. H., "Production of Levulinic Acid from Marine Algae Codium fragile Using Acid-hydrolysis and Response Surface Methodology," Korean Society for Biotechnology and Bioengineering Journal, 26, 341-346(2011). https://doi.org/10.7841/ksbbj.2011.26.4.341
  2. Hayes, D. J., Fitzpatrick, S., Hayes, M. H. B. and Ross, J. R. H., "The Biofine Process-Production of Levulinic Acid, Furfural, and Formic Acid from Lignocellulosic Feedstocks," pp. 139-164. In: B. Kamm, P. R. Gruber, M. Kamm (eds.). Biorefineries-Industrial Processes and Products, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim (2006).
  3. Han, J. G., Oh, S. H., Choi, W. Y., Woong, K. J., Seo, H. B., Jeong, K. H., Kang, D. H. and Lee, H. Y., "Enhancement of Saccharification Yield of Ulva pertusa kjellman for Ethanol Production Through High Temperature Liquefaction Process," Korean Society for Biotechnology and Bioengineering Journal, 25(4), 357-362(2010).
  4. Demibras, A., "Progress and Recent Trends in Biofuels," Prog. Energy Combust. Sci., 33, 1-18(2007). https://doi.org/10.1016/j.pecs.2006.06.001
  5. Jeong, G. T. and Park, D. H., "Production of Sugars and Levulinic Acid from Marine Biomass Gelidium amansii," Appl. Biochem. Biotechnol., 161, 41-52(2010). https://doi.org/10.1007/s12010-009-8795-5
  6. Cha, J. Y. and Hanna, M. A., "Levulinic Acid Production Based on Extrusion and Pressurized Batch Reaction," Industrial Crops and Products, 16, 109-118(2002). https://doi.org/10.1016/S0926-6690(02)00033-X
  7. Coh, B. Y., Lee, J. W., Kim, E. S. and Park, Y. S., "Industry Analysis : Chitosan," J. Chitin Chitisan, 8(3), 127-133(2003).
  8. Korea Institute for Advancement of Technology, "Chitin/chitosan," Report MDB03077, 1-22(2003).
  9. Diab, M. A., El-Sonbati, A. Z., El-dien, I. M. and Bader, D. M. D., "Thermal Stability and Degradation of Chitosan Modified with Phenylacetic Acid," Korean J. Chem. Eng., 30(10), 1966-1971(2013). https://doi.org/10.1007/s11814-013-0134-4
  10. Al-Deyab, S. S., El-Newehy, M. H., Nirmala, R., Abdel-Megeed, A. and Kim, H, Y., "Preparation of Nylon-6/Chitosan Composites by Nanospider Technology and Their Use as Candidate for Antibacterial Agents," Korean J. Chem. Eng., 30(2), 422-428(2013). https://doi.org/10.1007/s11814-012-0154-5
  11. Kang, M. K., Hong, S. K., Seo, Y. C., Kim, Y. O., Lee, H. Y. and Kim, J. C., "Chitosan Microgel: Effect of Cross-linking Density on pH-dependent Release," Korean J. Chem. Eng., 29(1), 72-76 (2012). https://doi.org/10.1007/s11814-011-0138-x
  12. The Pacific Northwest National Laboratory (PNNL) and the National Renewable Energy Laboratory (NREL), Top value added chemicals from biomass, volume I-Results of screening for potential candidates from sugars and synthesis gas. http://www.osti.gov/ bridge(2004).
  13. Kim, J. S., "Production of Levulinic Acid from Gelidium amansii Using Two Step Acid Hydrolysis," Korean Chem. Eng. Res., 51(4), 438-442(2013). https://doi.org/10.9713/kcer.2013.51.4.438
  14. Jeong, G. T., Yang, H. S., Park, S. H. and Park, D. H., "Optimization of Biodiesel Production from Rapeseed Oil Using Response Surface Methodology," Korean J. Biotechnol. Bioeng., 22(4), 222-227(2007).

Cited by

  1. 창자파래로부터 citrate buffer를 이용한 전처리와 효소가수분해를 통한 환원당 생산 vol.54, pp.1, 2014, https://doi.org/10.9713/kcer.2015.54.1.70
  2. QDs를 이용한 키토산-골드와 키토산-실버 나노약물전달체 제조 vol.54, pp.2, 2014, https://doi.org/10.9713/kcer.2016.54.2.200
  3. 바이오화학공학에서 3D 바이오프린팅 기술 vol.54, pp.3, 2016, https://doi.org/10.9713/kcer.2016.54.3.285