DOI QR코드

DOI QR Code

Economic Evaluations for the Carbon Dioxide-involved Production of High-value Chemicals

이산화탄소를 활용한 고부가화합물 제조기술의 경제성 평가연구

  • Lee, Ji Hyun (Future Technology Research Center, KEPCO Research Institute) ;
  • Lee, Dong Woog (Future Technology Research Center, KEPCO Research Institute) ;
  • Gyu, Jang Se (Future Technology Research Center, KEPCO Research Institute) ;
  • Kwak, No-Sang (Future Technology Research Center, KEPCO Research Institute) ;
  • Lee, In Young (Future Technology Research Center, KEPCO Research Institute) ;
  • Jang, Kyung Ryoung (Future Technology Research Center, KEPCO Research Institute) ;
  • Choi, Jong Shin (Korea East-West Power Co., LTD.) ;
  • Shim, Jae-Goo (Future Technology Research Center, KEPCO Research Institute)
  • 이지현 (한전 전력연구원, 미래기술연구소) ;
  • 이동욱 (한전 전력연구원, 미래기술연구소) ;
  • 장세규 (한전 전력연구원, 미래기술연구소) ;
  • 곽노상 (한전 전력연구원, 미래기술연구소) ;
  • 이인영 (한전 전력연구원, 미래기술연구소) ;
  • 장경룡 (한전 전력연구원, 미래기술연구소) ;
  • 최종신 (한국동서발전(주)) ;
  • 심재구 (한전 전력연구원, 미래기술연구소)
  • Received : 2014.02.07
  • Accepted : 2014.03.04
  • Published : 2014.06.01

Abstract

Economic evaluation of the manufacturing technology of high-value chemicals through the carbonation reaction of carbon dioxide contained in the flue gas was performed, and analysis of the IRR (Internal Rate of Return) and whole profit along the production plan of the final product was conducted. Through a carbonation reaction with sodium hydroxide that is generated from electrolysis and by using carbon dioxide in the combustion gas that is generated in the power plant, it is possible to get a high value products such as sodium bicarbonate compound and also to reduce the carbon dioxide emission simultaneously. The IRR (Internal Rate of Return) and NPV (Net Present Value) methods were used for the economic evaluation of the process which could handle carbon dioxide of 100 tons per day in the period of the 20 years of plant operation. The results of economic evaluation showed that the IRR of baseline case of technology was 67.2% and the profit that obtained during the whole operation period (20 years) was 346,922 million won based on NPV value. When considering ETS due to the emissions trading enforcement that will be activated in 2015, the NPV was improved to a 6,000 million won. Based on this results, it could be concluded that this $CO_2$ carbonation technology is an cost-effective technology option for the reduction of greenhouse gas.

본 연구에서는 연소 배가스 중에 포함된 이산화탄소의 탄산화 반응을 통한 고부가화합물 제조기술의 경제성평가를 수행하고 화합물 생산 계획에 따른 이익 및 내부수익률(Internal Rate of Return, IRR)을 분석하였다. 본 연구에서 고려된 기술을 이용하면 발전소에서 발생되는 연소배가스 중의 이산화탄소와 전기분해를 통해 발생되는 가성소다와의 탄산화 반응을 통해 고부가화합물(중탄산나트륨, $NaHCO_3$)의 생산 및 이산화탄소의 저감이 동시에 가능하다. 또한 전기분해에서 생산되는 염소 및 수소 가스는 다시 차아염소산나트륨(NaOCl) 및 고순도 염산의 제조에 적용된다. 기술의 경제성 평가를 위한 방법으로는 순현재가치법(Net Present Value method, NPV) 및 내부수익률(Internal Rate of Return, IRR)을 활용하여 일일 100톤의 이산화탄소를 처리할 수 있는 공정을 대상으로 20년간 상업운전을 가정하였다. 상기 가정하에서 20년간의 내부수익률은 약 67.2%, 20년간의 운전기간을 통한 총 이익은 순현가 기준으로 약 346,922 백만원으로 산출되었다. 그리고 2015년부터 시행예정인 탄소배출권 거래가 활성됨에 따른 ETS 수익을 고려할 경우 총이익은 약 60억원 향상되는 것으로 분석이 되었다. 상기 분석을 살펴보면 이산화탄소의 탄산화 반응을 통한 고부가화합물 제조기술은 온실가스 저감효과를 가져올 뿐만 아니라 경제성이 뛰어난 것으로 생각된다.

Keywords

References

  1. http://www.tcmda.com/en.
  2. http://www.mhi.co.jp/en/news/story/1209141573.html.
  3. http://sequestration.mit.edu/tools/projects/boundary_dam.html.
  4. Lee, J. H., Kwak, N.-S., Lee, I. Y., Jang, K. R., Jang S. G., Lee, K. J., Han, G. S., Oh, D.-H. and Shim, J.-G., "Test Bed Studies with Highly Efficient Amine $CO_2$ Solvent(KoSol-4)," Korean Chem. Eng. Res.(HWAHAK KONGHAK), 51(2), 267-271(2013). https://doi.org/10.9713/kcer.2013.51.2.267
  5. http://skonic.com/skymine.
  6. http://www.twence.nl/en/actueel/Dossiers/Dossier Bicarbonate/120411 Producing sodium bicarbonate.docx/.
  7. Zaelke, et al. Scientific Synthesis of the Calera Sequestration of Carbon(2011).
  8. Jung, K.-D., "Mineralization using Brine Water," KIC News, 15(2), 25(2012).
  9. Huijgen, et al., "Cost Evaluation of $CO_2$ Sequestration by Aqueous Mineral Carbonation," EEnergy Convers. Manage., 48, 1923(2007). https://doi.org/10.1016/j.enconman.2007.01.035
  10. Zevenhoven, et al., "A Study on MgO-based Mineral Carbonation Kinetics Using Pressurised Thermogravimetric Analysis," 8th International Conference on Greenhouse Gas Control Technologies(2006).
  11. Iizuka, et al., "Development of a New $CO_2$ Sequestration Process Utilizing the Carbonation of Waste Cement," Ind. Eng. Chem. Res. 43, 7880(2004). https://doi.org/10.1021/ie0496176
  12. Jerzy Chilstunoff, Advanced Chlor-Alkali Technology, DOE Award 03EE-2F/ED190403, Los Alamos National Laboratory (2004).
  13. IEA Greenhouse Gas R&D Programme, "Criteria for Technical and Economic Assessment of Plants with Low $CO_2$ Emissions," International Energy Agency ed., Gloucestershire, U.K.(2009).
  14. Lee, J. H., Kwak, N.-S., Lee, I. Y., Jang, K. R. and Shim, J.-G., "Performance and Economic Analysis of Domestic Supercritical Coal-Fired Power plant with Post-Combustion $CO_2$ capture Process," Korean Chem. Eng. Res.(HWAHAK KONGHAK), 50(2), 365-370(2012). https://doi.org/10.9713/kcer.2012.50.2.365
  15. Bae, J. S., Hwang, I. S., Kweon, Y. J., Choi, Y. C., Park, S. J., Kim, H. J., Jung, H. and Han, C., "Economic Evaluations of Direct, Indirect and Hybrid Coal Liquefaction," Korean J. Chem. Eng., 29(7), 868-875(2012). https://doi.org/10.1007/s11814-011-0266-3
  16. Korea Development Institute, A study on standard guideline for pre-feasibility study, 5th edition, 181-213(2008).
  17. KEPCO, Electricity price table, 2013.11.21(2013).
  18. ChemLocus, Special Report, 2013.07.29(2013).
  19. The Korea Price Research Center, price list(2014).
  20. Hongin chemical, market report(2013).
  21. DOE, "DOE Hydrogen and Fuel Cells Program Record," (2012).
  22. Oceana Analysis of Memorandum on the Cost Effectiveness of Mercury-free Technology in the Chlor-Alkali sector(2009).
  23. Carbon market information, report(2013).

Cited by

  1. Operating Optimization and Economic Evaluation of Multicomponent Gas Separation Process using Pressure Swing Adsorption and Membrane Process vol.53, pp.1, 2015, https://doi.org/10.9713/kcer.2015.53.1.31
  2. Utilization (NCCU) Technology vol.53, pp.5, 2015, https://doi.org/10.9713/kcer.2015.53.5.590
  3. Experimental study on capture of carbon dioxide and production of sodium bicarbonate from sodium hydroxide vol.21, pp.3, 2016, https://doi.org/10.4491/eer.2016.042
  4. 염수 전기분해와 연계한 이산화탄소의 전환 공정 연구 vol.55, pp.1, 2017, https://doi.org/10.9713/kcer.2017.55.1.86
  5. 제철 슬래그를 이용한 광물 탄산화 기술의 개발 현황과 연구 방향 vol.55, pp.2, 2014, https://doi.org/10.9713/kcer.2017.55.2.141
  6. Economic Evaluation of Carbon Capture and Utilization Applying the Technology of Mineral Carbonation at Coal-Fired Power Plant vol.12, pp.15, 2014, https://doi.org/10.3390/su12156175