• Title/Summary/Keyword: low-power ADC

Search Result 159, Processing Time 0.026 seconds

Double Rail-to-Rail NTV SAR ADC (두 배의 Rail-to-Rail 입력 범위를 갖는 NTV SAR ADC)

  • Jo, Yong-Jun;Seong, Kiho;Seo, In-Shik;Baek, Kwang-Hyun
    • Journal of IKEEE
    • /
    • v.22 no.4
    • /
    • pp.1218-1221
    • /
    • 2018
  • This paper presents a low-power 0.6-V 10-bit 200-kS/s double rail-to-rail successive approximation register (SAR) analog-to-digital converter (ADC). The proposed scheme allows input signal with 4 times power which is compared with conventional one by applying proposed rail-to-rail scheme, and that improves signal-to-noise ratio(SNR) of NTV SAR ADCs. The prototype was designed using 65-nm CMOS technology. At a 0.6-V supply and $2.4-V_{pp}$ (differential) and 200-kS/s, the ADC achieves an SNDR of 59.87 dB and consumes 364.5-nW. The ADC core occupies an active area of only $84{\times}100{\mu}m^2$.

A High-speed St Low power Design Technique for Open Loop 2-step ADC (개방루프를 이용한 고속 저전력 2스텝 ADC 설계 기법)

  • 박선재;구자현;윤재윤;임신일;강성모;김석기
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.4A
    • /
    • pp.439-446
    • /
    • 2004
  • This paper describes high speed and low power design techniques for an 8-bit 500MSamples/s CMOS 2-step ADC. Instead of the conventional closed-loop architecture, the newly proposed ADC adopts open-loop architecture and uses a reset-switch to reduce loading time in an environment of big parasitic-capacitances of mux-array. An analog-latch is also used to reduce power consumption. Simulation result shows that the ADC has the SNDR of 46.91㏈ with a input frequency of 103MHz at 500Msample/s and consumes 203㎽ with a 1.8V single power supply. The chip is designed with a 0.18mm 1-poly 6-metal CMOS technology and occupies active area of 760${\mu}{\textrm}{m}$*800${\mu}{\textrm}{m}$.

Design of a CMOS Image Sensor Based on a Low Power Single-Slope ADC (저전력 Single-Slope ADC를 사용한 CMOS 이미지 센서의 설계)

  • Kwon, Hyuk-Bin;Kim, Dae-Yun;Song, Min-Kyu
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.2
    • /
    • pp.20-27
    • /
    • 2011
  • A CMOS Image Sensor(CIS) mounted on mobile appliances always needs a low power consumption because of the battery life cycle. In this paper, we propose novel power reduction techniques such as a data flip-flop circuit with leakage current elimination, a low power single slope A/D converter with a novel comparator, and etc. Based on 0.13um CMOS process, the chip satisfies QVGA resolution($320{\times}240$ pixels) whose pitch is 2.25um and whose structure is 4-Tr active pixel sensor. From the experimental results, the ADC in the middle of CIS has a 10-b resolution, the operating speed of CIS is 16 frame/s, and the power dissipation is 25mW at 3.3V(Analog)/1.8V(Digital) power supply. When we compare the proposed CIS with conventional ones, the power consumption is reduced approximately by 22% in sleep mode, 20% in operating mode.

A 0.16㎟ 12b 30MS/s 0.18um CMOS SAR ADC Based on Low-Power Composite Switching (저전력 복합 스위칭 기반의 0.16㎟ 12b 30MS/s 0.18um CMOS SAR ADC)

  • Shin, Hee-Wook;Jeong, Jong-Min;An, Tai-Ji;Park, Jun-Sang;Lee, Seung-Hoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.7
    • /
    • pp.27-38
    • /
    • 2016
  • This work proposes a 12b 30MS/s 0.18um CMOS SAR ADC based on low-power composite switching with an active die area of $0.16mm^2$. The proposed composite switching employs the conventional $V_{CM}$-based switching and monotonic switching sequences while minimizing the switching power consumption of a DAC and the dynamic offset to constrain a linearity of the SAR ADC. Two equally-divided capacitors topology and the reference scaling are employed to implement the $V_{CM}$-based switching effectively and match an input signal range with a reference voltage range in the proposed C-R hybrid DAC. The techniques also simplify the overall circuits and reduce the total number of unit capacitors up to 64 in the fully differential version of the prototype 12b ADC. Meanwhile, the SAR logic block of the proposed SAR ADC employs a simple latch-type register rather than a D flip-flop-based register not only to improve the speed and stability of the SAR operation but also to reduce the area and power consumption by driving reference switches in the DAC directly without any decoder. The measured DNL and INL of the prototype ADC in a 0.18um CMOS are within 0.85LSB and 2.53LSB, respectively. The ADC shows a maximum SNDR of a 59.33dB and a maximum SFDR of 69.83dB at 30MS/s. The ADC consumes 2.25mW at a 1.8V supply voltage.

A 12b 100MS/s 1V 24mW 0.13um CMOS ADC for Low-Power Mobile Applications (저전력 모바일 응용을 위한 12비트 100MS/s 1V 24mW 0.13um CMOS A/D 변환기)

  • Park, Seung-Jae;Koo, Byeong-Woo;Lee, Seung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.8
    • /
    • pp.56-63
    • /
    • 2010
  • This work proposes a 12b 100MS/s 0.13um CMOS pipeline ADC for battery-powered mobile video applications such as DVB-Handheld (DVB-H), DVB-Terrestrial (DVB-T), Satellite DMB (SDMB), and Terrestrial DMB (TDMB) requiring high resolution, low power, and small size at high speed. The proposed ADC employs a three-step pipeline architecture to optimize power consumption and chip area at the target resolution and sampling rate. A single shared and switched op-amp for two MDACs removes a memory effect and a switching time delay, resulting in a fast signal settling. A two-step reference selection scheme for the last-stage 6b FLASH ADC reduces power consumption and chip area by 50%. The prototype ADC in a 0.13um 1P7M CMOS technology demonstrates a measured DNL and INL within 0.40LSB and 1.79LSB, respectively. The ADC shows a maximum SNDR of 60.0dB and a maximum SFDR of 72.4dB at 100MS/s, respectively. The ADC with an active die area of 0.92 $mm^2$ consumes 24mW at 1.0V and 100MS/s. The FOM, power/($f_s{\times}2^{ENOB}$), of 0.29pJ/conv. is the lowest of ever reported 12b 100MS/s ADCs.

Design of ADC for Dual-loop Digital LDO Regulator (이중 루프 Digital LDO Regulator 용 ADC 설계)

  • Sang-Soon Park;Jeong-Hee Jeon;Jae-Hyeong Lee;Joong-Ho Choi
    • Journal of IKEEE
    • /
    • v.27 no.3
    • /
    • pp.333-339
    • /
    • 2023
  • The global market for wearable devices is growing, driving demand for efficient PMICs. Wearable PMICs must be highly energy-efficient despite limited hardware resources. Advancements in process technology enable low-power consumption, but traditional analog LDO regulators face challenges with reduced power supply voltage. In this paper, a novel ADC design with a 3-bit continuous-time flash ADC for the coarse loop and a 5-bit discrete-time SAR ADC for the fine loop is proposed for digital LDO, achieving a 34.78 dB SNR and 5.39 bits ENOB in a 55-nm CMOS technology.

Design of A High-Speed Current-Mode Analog-to-Digital Converter (고속 전류 구동 Analog-to-digital 변환기의 설계)

  • 조열호;손한웅;백준현;민병무;김수원
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.7
    • /
    • pp.42-48
    • /
    • 1994
  • In this paper, a low power and high speed flash Analog-to-Digital Converter using current-mode concept is proposed. Current-mode approach offers a number of advantages over conventional voltage-mode approach, such as lower power consumption small chip area improved accuracy etc. Rescently this concept was applied to algorithmic A/D Converter. But, its conversion speed is limited to medium speed. Consequently this converter is not applicable to the high speed signal processing system. This ADC is fabricated in 1.2um double metal CMOS standard process. This ADC's conversion time is measured to be 7MHz, and power consumption is 2.0mW, and differential nonlinearity is less than 1.14LSB and total harmonic distortion is -50dB. The active area of analog chip is about 350 x 550u$m^2$. The proposed ADC seems suitable for a single chip design of digital signal processing system required high conversion speed, high resolution small chip area and low power consumption.

  • PDF

A 9 mW Highly-Digitized 802.15.4 Receiver Using Bandpass ∑Δ ADC and IF Level Detection

  • Kwon, Yong-Il;Park, Ta-Joon;Lee, Hai-Young
    • Journal of electromagnetic engineering and science
    • /
    • v.8 no.2
    • /
    • pp.76-83
    • /
    • 2008
  • A low power(9 mW) highly-digitized 2.4 GHz receiver for sensor network applications(IEEE 802.15.4 LR-WPAN) is realized by a $0.18{\mu}m$ CMOS process. We adopted a novel receiver architecture adding an intermediate frequency (IF) level detection scheme to a low-power complex fifth-order continuous-time(CT) bandpass L:tl modulator in order to digitalize the receiver. By the continuous-time bandpass architecture, the proposed $\Sigma\Delta$ modulator requires no additional anti-aliasing filter in front of the modulator. Using the IF detector, the achieved dynamic range(DR) of the over-all system is 95 dB at a sampling rate of 64 MHz. This modulator has a bandwidth of 2 MHz centered at 2 MHz. The power consumption of this receiver is 9.0 mW with a 1.8 V power supply.

A 10b 100 MSample/s $1.4\;mm^2$ 56 mW 0.18 urn CMOS A/D Converter for Low-Power Multimedia Applications (저전력 멀티미디어 응용을 위한 10b 100 MSample/s $1.4\;mm^2$ 56 mW 0.18 um CMOS A/D 변환기)

  • Min Byoung-Han;Park Hee-Won;Chae Hee-Sung;Sa Doo-Hwan;Lee Seung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.12
    • /
    • pp.53-60
    • /
    • 2005
  • This work proposes a 10b 100 MS/s $1.4\;mm^2$ CMOS ADC for low-power multimedia applications. The proposed two-step pipeline ADC minimizes chip area and power dissipation at the target resolution and sampling rate. The wide-band SHA employs a gate-bootstrapping circuit to handle both single-ended and differential inputs with 1.2 Vp-p at 10b accuracy while the second-stage flash ADC employs open-loop offset sampling techniques to achieve 6b resolution. A 3-D fully symmetrical layout reduces the capacitor and device mismatch of the first-stage MDAC. The low-noise references are integrated on chip with optional off-chip voltage references. The prototype 10b ADC implemented in a 0.18 um CMOS shows the maximum measured DNL and INL of 0.59 LSB and 0.77 LSB, respectively. The ADC demonstrates the SNDR of 54 dB, the SFDR of 62 dB, and the power dissipation of 56 mW at 100 MS/s.

A Calibration-Free 14b 70MS/s 0.13um CMOS Pipeline A/D Converter with High-Matching 3-D Symmetric Capacitors (높은 정확도의 3차원 대칭 커패시터를 가진 보정기법을 사용하지 않는 14비트 70MS/s 0.13um CMOS 파이프라인 A/D 변환기)

  • Moon, Kyoung-Jun;Lee, Kyung-Hoon;Lee, Seung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.12 s.354
    • /
    • pp.55-64
    • /
    • 2006
  • This work proposes a calibration-free 14b 70MS/s 0.13um CMOS ADC for high-performance integrated systems such as WLAN and high-definition video systems simultaneously requiring high resolution, low power, and small size at high speed. The proposed ADC employs signal insensitive 3-D fully symmetric layout techniques in two MDACs for high matching accuracy without any calibration. A three-stage pipeline architecture minimizes power consumption and chip area at the target resolution and sampling rate. The input SHA with a controlled trans-conductance ratio of two amplifier stages simultaneously achieves high gain and high phase margin with gate-bootstrapped sampling switches for 14b input accuracy at the Nyquist frequency. A back-end sub-ranging flash ADC with open-loop offset cancellation and interpolation achieves 6b accuracy at 70MS/s. Low-noise current and voltage references are employed on chip with optional off-chip reference voltages. The prototype ADC implemented in a 0.13um CMOS is based on a 0.35um minimum channel length for 2.5V applications. The measured DNL and INL are within 0.65LSB and l.80LSB, respectively. The prototype ADC shows maximum SNDR and SFDR of 66dB and 81dB and a power consumption of 235mW at 70MS/s. The active die area is $3.3mm^2$.