• Title/Summary/Keyword: low NOx

Search Result 611, Processing Time 0.026 seconds

Study of Robust Design of a Off-road Diesel Engine considering Emission characteristics of NOx and PM (NOx와 PM 배출물 특성을 고려한 오프로드 디젤 엔진의 강건 설계에 관한 연구)

  • Chung, Jin-Eun;Ahn, Jueng-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.8
    • /
    • pp.4729-4735
    • /
    • 2014
  • To protect the environment, the regulation of emissions from off-road engines which are relatively neglected, is being reinforced. This paper deals with the robust design of off-road diesel engines considering the emission characteristics. Measurements of the NOx and PM levels based on the DOE were carried out. The injector hole number, injection timing and EGR rate were selected as the control factors. The orthogonal arrays table $L_9(3^3)$ was made from 2 or 3 levels for each factor and measurements of emissions were accomplished based on the table. The small-the-better SN ratio according to the Taguchi method was evaluated. The ANOVA (analysis of variance) for the SN ratio was conducted. The injection timing on the NOx emissions and the EGR rate on the PM have the largest effect on the low-load operation condition. The confidence levels of the control factors were more than 90%.

Numerical Investigation of Low-pollution Combustion with applying Flue Gas Recirculation in Counterflow Flames: Part I. Combustion Characteristics of Low NOx (대향류 화염에서 FGR이 적용된 저공해 연소의 수치적 해석: Part I. 저 NOx 연소특성)

  • Cho, Seo-Hee;Lee, Kee-Man
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.6
    • /
    • pp.8-16
    • /
    • 2019
  • One of the methods for low-pollution combustion, flue gas recirculation(FGR) is effective to reduce nitrogen oxides and it was applied in CH4/air premixed counterflow flames to identify the change of flame characteristics and NOx mechanisms. Considering that the mole fraction of the products varied depending on the strain rates, the major products: CO2, H2O, O2 and N2 were recirculated as a diluent to reflect the actual combustion system. With the application of the FGR technique, a turning point of maximum flame temperature under certain strain rate condition was found. Furthermore as the recirculation ratio increased, the tendency of NO was changed before and after the turning point and the analysis on thermal NO and Fenimore NO production was conducted.

The Development of LPP Combustor for ESPR

  • Kinoshita, Yasuhiro;Oda, Takeo;Kobayashi, Masayoshi;Ninomiya, Hiroyuki;Kimura, Hideo;Hayashi, Shigeru;Yamada, Hideship;Shimodaira, Kazuo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.453-459
    • /
    • 2004
  • An axially staged combustor equipped with an LPP combustion system and CMC liner walls has been investigated for stable combustion and low NOx emissions for the ESPR project. Several fuel injectors were designed and manufactured for the LPP burner, and single sector combustor tests were conducted to evaluate fundamental combustion characteristics such as emissions, instabilities, auto-ignition, and flash back at typical operating conditions from idle to Mn 2.2 cruise. The latest test results showed that the LPP burner had a good potential for the low NOx target. It was also found that the NOx emission level was greatly affected by a distortion in the air flow velocity field upstream of the LPP burner due to the diffuser and fuel feed arm. The CMC material was investigated to apply for the high temperature and low NOx combustor. Annular combustor liner walls were manufactured with the CMC material, and they have been tested at low pressure conditions to evaluate the soundness of the material and the mounting and seal system. This paper reports the latest research activities on the LPP combustion system and CMC liner walls for the ESPR project.

  • PDF

Evaluation of NOx Removal Efficiency of Photocatalytic Concrete for Road Structure (도로구조물 적용을 위한 광촉매 콘크리트의 질소산화물(NOx) 제거효율 평가)

  • Kim, Young Kyu;Hong, Seong Jae;Lee, Kyung Bae;Lee, Seung Woo
    • International Journal of Highway Engineering
    • /
    • v.16 no.5
    • /
    • pp.49-58
    • /
    • 2014
  • PURPOSES : In areas of high traffic volume, such as expressway across large cities, the amount of nitrogen oxides (NOx) emitted into the atmosphere as air pollution can be significant since NOx gases are the major cause of smog and acid rain. Recently, the importance of NOx removal has arisen in the world. Titanium dioxide ($TiO_2$), that is one of photocatalytic reaction material, is very efficient for removing NOx. The NOx removing mechanism of $TiO_2$ is the reaction of solar photocatalysis. Therefore, $TiO_2$ in road structure concrete need to be contacted with ultraviolet rays (UV) to be activated. In general, $TiO_2$ concretes are produced by replacement of $TiO_2$ as a part of concrete binder. However, considerable portion of $TiO_2$ in concrete cannot contact with the pollutant in the air and UV. Therefore, $TiO_2$ penetration method using the surface penetration agents is attempted as an alternative in order to locate $TiO_2$ to the surface of concrete structure. METHODS : This study aimed to evaluate the NOx removal efficiency of photocatalytic concrete due to various $TiO_2$ application method such as mix with $TiO_2$, surface spray($TiO_2$ penetration method) on hardened concrete and fresh concrete using surface penetration agents. The NOx removal efficiency of $TiO_2$ concrete was confirmed by NOx Analyzing System based on the specification of ISO 22197-1. RESULTS : The NOx removal efficiency of mix with $TiO_2$ increased from 11 to 25% with increasing of replacement ratio from 3 to 7%. In case of surface spray on hardened concrete, the NOx removal efficiency was about 50% due to application amount of $TiO_2$ with surface penetration agents as 300, 500 and 700g/m2. The NOx removal efficiency of surface spray on fresh concrete due to all experimental conditions, on the other hand, which was very low within 10%. CONCLUSIONS : It was known that the $TiO_2$ penetration method as surface spray on hardened concrete was a good alternative in order to remove the NOx gases for concrete road structures.

A Study of Improving Combustion Stability with Sonic Wave Radiation (음파를 이용한 연소 안정성 개선에 관한 연구)

  • Min, Sun-ki
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.8
    • /
    • pp.401-406
    • /
    • 2020
  • NOx (nitrogen oxide) in the exhaust gas engines causes severe air pollution. NOx is produced under high-temperature combustion conditions. EGR (exhaust gas recirculation) is normally used to reduce the combustion temperature and NOx production. As the EGR ratio increases, the NOx level becomes low. On the other hand, an excessively high EGR ratio makes the combustion unstable resulting in other air pollution problems, such as unburned hydrocarbon and higher CO levels. In this study, the improvement of fuel droplets moving by the radiation of sonic waves was studied for the stable combustion using analytic and experimental methods. For the analytical study, the effects of the radiation of a sonic wave on the fuel droplet velocity were studied using Fluent software. The results showed that the small droplet velocity increased more under high-frequency sonic wave conditions, and the large droplet velocity increased more under low-frequency sonic wave conditions. For the experimental study, the combustion chamber was made to measure the combustion pressure under the sonic wave effect. The measured pressure was used to calculate the heat release rate in the combustion chamber. With the heat release rate data, the heat release rate increased during the initial combustion process under low-frequency sonic wave conditions.

The Simultaneous removal of NOx using Wet Scrubber (습식 스크러버를 이용한 NOx 제거에 관한 연구)

  • Kim, Jae-Gang;Lee, Ju-Yeol;Park, Byung Hyun;Choi, Jin-Sik
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.296-301
    • /
    • 2015
  • The experiment was performed for in order to remove NOx which is generated in the Ship's engine. it was performed test in order to remove NOx which is generated in the Ship's engine. It was used as the oxidizing agent sodium chlorite. Use the oxidizer is nitrogen monoxide was oxidized to nitrogen dioxide. and was tested pH adjustment to increase the efficiency of oxidizing. An aqueous solution of sodium hydroxide was used for the nitrogen dioxide absorbent. Low concentration of the solution, it showed a high efficiency. improves the absorption efficiency by add additives.

Experimental Study on the Flame Stability and the NOx Emission Characteristics of Low-Btu Coal Gas Fuel (저 발열량 석탄가스 연료의 화염 안정성 및 NOx 발생 특성에 관한 실험적 연구)

  • Lee, Chan;Kim, Yong-Chul
    • Journal of Energy Engineering
    • /
    • v.9 no.2
    • /
    • pp.109-116
    • /
    • 2000
  • 저발열량 석탄가스의 thermal/fuel NOx 생성특성과 화염 안정성을 규명하기 위한 실험적 연구를 수행하였다. 저발열량 합성 연료 가스는 일산화탄소, 수소, 질소 및 암모니아를 천연가스 연료와 동일한 입열량을 가지도록 혼합하여 만들었고 , 합성가스는 평면 화염 버너를 공급하여 태웠다. 특정한 합성가스에 대해 당량비를 변화시켜 가며, 비화 또는 역화에 의한 화염안정성을 규명하였고 안정된 화염 영역을 정의하였다. 저발열향 합성가스의 연소시 발생하는 thermal 및 fuel NOx를 측정하여 천연가스 연소시의 경우와 비교하였다.

  • PDF

A Numerical Simulation of High Ozone Episode Using OZIPR in Busan (OZIPR을 이용한 부산지역 고농도 오존 사례 모사)

  • Do, Woo-Gon;Lee, Hwa-Woon;Jung, Woo-Sik
    • Journal of Environmental Science International
    • /
    • v.16 no.8
    • /
    • pp.985-994
    • /
    • 2007
  • To investigate the effect of NOx and VOCs(volatile organic compounds) on the generation of high ozone episode, examined the hourly variations of ozone, NOx and VOCs concentrations, and calculated the ozone isopleth about maximum ozone concentrations using OZIPR which was presented by U. S. EPA at three sites in Busan. There was some difference by the sites, but decreasing VOCs concentration was effective for reduction of ozone at 22 July, the episode day of 2005. In the year 2006, the episode day was 8 August and the variations of NOx and VOCs concentration was little than variation of ozone. So it was estimated that the photochemical production of ozone was low than transportation of ozone. And the result of the OZIPR modeling was that decreasing VOCs concentration was effective for reduction of ozone.

An Experimental Study on the Simultaneous Reduction of Smoke and NOx by Oxygenated Fuel Additives in DI Diesel Engine (직접분사식 디젤기관에서 함산소연료 첨가에 의한 매연과 NOx 동시 저감에 관한 실험적 연구)

  • ;近久 武美
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.2
    • /
    • pp.106-114
    • /
    • 1996
  • Extensive experiments were conducted to investigate the emission of DI diesel engine by using DMC(dimethyl carbonate) as an oxygenated fuel additives. The results indicate that smoke reduces almost linearly with fuel oxygen contents. Reductions of HC and CO were attained noticeably, while a small increase in NOx was encountered concurrently. The effective reduction in smoke with DMC was maintained with the presence of CO2, which suggested a low NOx and smoke operation could be obtained in combination of using oxygenated fuel and EGR. Further experiment was conducted a thermal cracking set-up for mechanism studies.

  • PDF

A Development of Environmental-friendly Burner with High Injection Velocity by Multi-staged Fuel-injection (환경친화형 연료분할-고속분사식 버너 개발)

  • Choo, Jae-Min;Ko, Young-Ki;Kim, Jong-Woo;Kim, Cheol-Min
    • 한국연소학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.148-155
    • /
    • 2005
  • In this study, Development of 300,000kcal/hr high velocity Injection burner with fuel multi-stage was performed using experiments. The characteristics of NOx emission in multi fuel/air staged combustor have been experimentally studied. The design concept of multi fuel/air staged combustor is creation of two separate flame, a primary flame is largest access air combustion and the secondary flame is complete combustion zone, where most of fuel bums. Experiments were performed on an industrial scale in a laboratory furnace and Liquefied Natural Gas(LNG) was used as primary and secondary fuels. Comparison of outlet NOx and outlet Temperature under various air rate and primary/ secondary fuel ratio was performed. The test demonstrated that NOx emission con be reduced by 70% in accordance with operating conditions.

  • PDF