• Title/Summary/Keyword: location detection

Search Result 1,591, Processing Time 0.027 seconds

A Scheme of Identity Authentication and Anomaly Detection using ECG and Beacon-based Blockchain (ECG와 비콘 기반의 블록체인을 이용한 신원 인증 및 이상징후 탐지 기법)

  • Kim, Kyung-Hee;Lee, Keun-Ho
    • Journal of Internet of Things and Convergence
    • /
    • v.7 no.3
    • /
    • pp.69-74
    • /
    • 2021
  • With the recent development of biometric authentication technology, the user authentication techniques using biometric authentication are increasing. Various problems arised in certification techniques that use various existing methods such as ID/PW. Therefore, recently, a method of improving security by introducing biometric authentication as secondary authentication has been used. In this thesis, proposal of the user authentication system that can detect user identification and anomalies using ECGs that are extremely difficult to falsify through the electrical biometric signals from the heart among various biometric authentication devices is studied. The system detects user anomalies by comparing ECG data received from a wrist-mounted wearable device-type ECG measurement tool with identification and ECG data stored in blockchain form on the database and identifying the user's location through a beacon system.

A Study on the Pipe Position Estimation in GPR Images Using Deep Learning Based Convolutional Neural Network (GPR 영상에서 딥러닝 기반 CNN을 이용한 배관 위치 추정 연구)

  • Chae, Jihun;Ko, Hyoung-yong;Lee, Byoung-gil;Kim, Namgi
    • Journal of Internet Computing and Services
    • /
    • v.20 no.4
    • /
    • pp.39-46
    • /
    • 2019
  • In recently years, it has become important to detect underground objects of various marterials including metals, such as detecting the location of sink holes and pipe. For this reason, ground penetrating radar(GPR) technology is attracting attention in the field of underground detection. GPR irradiates the radar wave to find the position of the object buried underground and express the reflected wave from the object as image. However, it is not easy to interpret GPR images because the features reflected from various objects underground are similar to each other in GPR images. Therefore, in order to solve this problem, in this paper, to estimate the piping position in the GRP image according to the threshold value using the CNN (Convolutional Neural Network) model based on deep running, which is widely used in the field of image recognition, As a result of the experiment, it is proved that the pipe position is most reliably detected when the threshold value is 7 or 8.

Development of a Shockwave Detection Method based on Continuous Wavelet Transform using Vehicle Trajectory Data (차량 궤적 데이터를 활용한 연속웨이블릿변환 기반 충격파 검지 방법 개발)

  • Yang, Inchul;Jeon, Woo Hoon;Lee, Jo Young
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.5
    • /
    • pp.183-193
    • /
    • 2019
  • This study developed a shockwave detection and prediction of their extinction point method based on continuous wavelet transform using trajectory data from probe vehicles equipped with automotive sensors.. To analyze the effectiveness of the proposed method, this paper proposed two measures which are a distance error between the extinction points of the predictor and an time-location error of the extinction points. The proposed concept was proved using the micro simulation based experiment with three exogenous variables of traffic volume, lane-close duration, market penetration of probe vehicles. The analysis results show that the proposed method is capable of detecting the traffic shockwaves as well as predicting their extinction point, and also that the accuracy of the proposed method is highly dependent on the rate of the probe vehicles.

Lifesaver: Android-based Application for Human Emergency Falling State Recognition

  • Abbas, Qaisar
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.8
    • /
    • pp.267-275
    • /
    • 2021
  • Smart application is developed in this paper by using an android-based platform to automatically determine the human emergency state (Lifesaver) by using different technology sensors of the mobile. In practice, this Lifesaver has many applications, and it can be easily combined with other applications as well to determine the emergency of humans. For example, if an old human falls due to some medical reasons, then this application is automatically determining the human state and then calls a person from this emergency contact list. Moreover, if the car accidentally crashes due to an accident, then the Lifesaver application is also helping to call a person who is on the emergency contact list to save human life. Therefore, the main objective of this project is to develop an application that can save human life. As a result, the proposed Lifesaver application is utilized to assist the person to get immediate attention in case of absence of help in four different situations. To develop the Lifesaver system, the GPS is also integrated to get the exact location of a human in case of emergency. Moreover, the emergency list of friends and authorities is also maintained to develop this application. To test and evaluate the Lifesaver system, the 50 different human data are collected with different age groups in the range of (40-70) and the performance of the Lifesaver application is also evaluated and compared with other state-of-the-art applications. On average, the Lifesaver system is achieved 95.5% detection accuracy and the value of 91.5 based on emergency index metric, which is outperformed compared to other applications in this domain.

Implementation of Illegal Entry Detection System using Sensor Node and Image Processing (센서 노드와 영상처리 기법을 이용한 불법 침입 감지 시스템 구현)

  • Kim, Kyung-Jong;Jung, Se-Hoon;Sim, Chun-Bo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.741-744
    • /
    • 2009
  • In this paper, we design and implement an illegal entry detection system which efficiently can detect illegal intruders applying image processing technique on the perceived value of the infrared sensor and acquired image from two-way wireless camera(DRC) for prevention of damage caused by theft and the ratio of security in the security of the square such as livestock, agricultural products, and logistics warehouse. At first, the proposed system acquires the image from wireless camera when infrared sensor detect the location of illegal intruders. and then, the system process to determine movement by applying image process technique with acquired image. Finally, we send the detected and analyzed the results and the final image to security company and mobile device of owner.

  • PDF

Damage detection in structures using modal curvatures gapped smoothing method and deep learning

  • Nguyen, Duong Huong;Bui-Tien, T.;Roeck, Guido De;Wahab, Magd Abdel
    • Structural Engineering and Mechanics
    • /
    • v.77 no.1
    • /
    • pp.47-56
    • /
    • 2021
  • This paper deals with damage detection using a Gapped Smoothing Method (GSM) combined with deep learning. Convolutional Neural Network (CNN) is a model of deep learning. CNN has an input layer, an output layer, and a number of hidden layers that consist of convolutional layers. The input layer is a tensor with shape (number of images) × (image width) × (image height) × (image depth). An activation function is applied each time to this tensor passing through a hidden layer and the last layer is the fully connected layer. After the fully connected layer, the output layer, which is the final layer, is predicted by CNN. In this paper, a complete machine learning system is introduced. The training data was taken from a Finite Element (FE) model. The input images are the contour plots of curvature gapped smooth damage index. A free-free beam is used as a case study. In the first step, the FE model of the beam was used to generate data. The collected data were then divided into two parts, i.e. 70% for training and 30% for validation. In the second step, the proposed CNN was trained using training data and then validated using available data. Furthermore, a vibration experiment on steel damaged beam in free-free support condition was carried out in the laboratory to test the method. A total number of 15 accelerometers were set up to measure the mode shapes and calculate the curvature gapped smooth of the damaged beam. Two scenarios were introduced with different severities of the damage. The results showed that the trained CNN was successful in detecting the location as well as the severity of the damage in the experimental damaged beam.

Bioimage Analyses Using Artificial Intelligence and Future Ecological Research and Education Prospects: A Case Study of the Cichlid Fishes from Lake Malawi Using Deep Learning

  • Joo, Deokjin;You, Jungmin;Won, Yong-Jin
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • v.3 no.2
    • /
    • pp.67-72
    • /
    • 2022
  • Ecological research relies on the interpretation of large amounts of visual data obtained from extensive wildlife surveys, but such large-scale image interpretation is costly and time-consuming. Using an artificial intelligence (AI) machine learning model, especially convolution neural networks (CNN), it is possible to streamline these manual tasks on image information and to protect wildlife and record and predict behavior. Ecological research using deep-learning-based object recognition technology includes various research purposes such as identifying, detecting, and identifying species of wild animals, and identification of the location of poachers in real-time. These advances in the application of AI technology can enable efficient management of endangered wildlife, animal detection in various environments, and real-time analysis of image information collected by unmanned aerial vehicles. Furthermore, the need for school education and social use on biodiversity and environmental issues using AI is raised. School education and citizen science related to ecological activities using AI technology can enhance environmental awareness, and strengthen more knowledge and problem-solving skills in science and research processes. Under these prospects, in this paper, we compare the results of our early 2013 study, which automatically identified African cichlid fish species using photographic data of them, with the results of reanalysis by CNN deep learning method. By using PyTorch and PyTorch Lightning frameworks, we achieve an accuracy of 82.54% and an F1-score of 0.77 with minimal programming and data preprocessing effort. This is a significant improvement over the previous our machine learning methods, which required heavy feature engineering costs and had 78% accuracy.

Development of Dental Calculus Diagnosis System using Fluorescence Detection (형광 검출을 이용한 치석 진단 시스템 개발)

  • Jang, Seon-Hui;Lee, Young-Rim;Lee, Woo-Cheol
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.4
    • /
    • pp.715-722
    • /
    • 2022
  • If you don't regularly go to the dentist to check your teeth, it is difficult to notice cavities or various diseases of your teeth until you have pain or discomfort. Dental plaque is produced by the combination of food or foreign substances and bacteria in the mouth. Starch breaks down from the bacteria that form tartar. The acid that occurs at this time melts the enamel of the teeth and becomes a cavity. So tartar management is important. Poppyrin, the metabolism of bacteria in the mouth, reacts at 405 nm wavelengths and becomes red fluorescent, which can be seen by imaging through certain wavelength filters. By the above method, Frag and tartar are fluorescently detected and photographed with a yellow series of filters that pass wavelengths of 500 nm or more. It uses MATLAB to detect and display red fluorescence through image processing. Using the difference in voltage between normal teeth and tartar through an optical measuring circuit, it was connected to an Arduino and displayed on the LCD. This allows the user to know the presence and location of dental plaque more accurately.

Hybrid Damage Monitoring Scheme of PSC Girder Bridges using Acceleration and Impedance Signature (가속도 및 임피던스 신호를 이용한 PSC 거더교의 하이브리드 손상 모니터링 체계)

  • Kim, Jeong-Tae;Park, Jae-Hyung;Hong, Dong-Soo;Na, Won-Bae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1A
    • /
    • pp.135-146
    • /
    • 2008
  • In this paper, a hybrid damage monitoring scheme for prestressed concrete (PSC) girder bridges by using sequential acceleration and impedance signatures is newly proposed. Damage types of interest include prestress-loss in tendon and flexural stiffness-loss in a concrete girder. The hybrid scheme mainly consists of three sequential phases: damage alarming, damage classification, and damage estimation. In the first phase, the global occurrence of damage is alarmed by monitoring changes in acceleration features. In the second phase, the type of damage is classified into either prestress-loss or flexural stiffness-loss by recognizing patterns of impedance features. In the third phase, the location and the extent of damage are estimated by using two different ways: a mode shape-based damage detection to detect flexural stiffness-loss and a natural frequency-based prestress prediction to identify prestress-loss. The feasibility of the proposed scheme is evaluated on a laboratory-scaled PSC girder model for which hybrid vibration-impedance signatures were measured for several damage scenarios of prestress-loss and flexural stiffness-loss.

Numerical simulation of localization of a sub-assembly with failed fuel pins in the prototype fast breeder reactor

  • Abhitab Bachchan;Puspendu Hazra;Nimala Sundaram;Subhadip Kirtan;Nakul Chaudhary;A. Riyas;K. Devan
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3648-3658
    • /
    • 2023
  • The early localization of a fuel subassembly with a failed (wet rupture) fuel pin is very important in reactors to limit the associated radiological and operational consequences. This requires a fast and reliable system for failure detection and their localization in the core. In the Prototype Fast Breeder Reactor, the system specially designed for this purpose is Failed Fuel Location Modules (FFLM) housed in the control plug region. It identifies a failed sub-assembly by detecting the presence of delayed neutrons in the sodium from a failed sub-assembly. During the commissioning phase of PFBR, it is mandatory to demonstrate the FFLM effectiveness. The paper highlights the engineering and physics design aspects of FFLM and the integrated simulation towards its function demonstration with a source assembly containing a perforated metallic fuel pin. This test pin mimics a MOX pin of 1 cm2 of geometrical defect area. At 10% power and 20% sodium flow rate, the counts rate in the BCCs of FFLM system range from 75 cps to 145 cps depending upon the position of DN source assembly. The model developed for the counts simulation is applicable to both metal and MOX pins with proper values of k-factor and escape coefficient.