• Title/Summary/Keyword: locally $C^*$-algebras

Search Result 13, Processing Time 0.022 seconds

α-COMPLETELY POSITIVE MAPS ON LOCALLY C*-ALGEBRAS, KREIN MODULES AND RADON-NIKODÝM THEOREM

  • Heo, Jaeseong;Ji, Un Cig;Kim, Young Yi
    • Journal of the Korean Mathematical Society
    • /
    • v.50 no.1
    • /
    • pp.61-80
    • /
    • 2013
  • In this paper, we study ${\alpha}$-completely positive maps between locally $C^*$-algebras. As a generalization of a completely positive map, an ${\alpha}$-completely positive map produces a Krein space with indefinite metric, which is useful for the study of massless or gauge fields. We construct a KSGNS type representation associated to an ${\alpha}$-completely positive map of a locally $C^*$-algebra on a Krein locally $C^*$-module. Using this construction, we establish the Radon-Nikod$\acute{y}$m type theorem for ${\alpha}$-completely positive maps on locally $C^*$-algebras. As an application, we study an extremal problem in the partially ordered cone of ${\alpha}$-completely positive maps on a locally $C^*$-algebra.

ALGEBRAS OF GELFAND-CONTINUOUS FUNCTIONS INTO ARENS-MICHAEL ALGEBRAS

  • Oubbi, Lahbib
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.2
    • /
    • pp.585-602
    • /
    • 2019
  • We characterize Gelfand-continuous functions from a Tychonoff space X into an Arens-Michael algebra A. Then we define several algebras of such functions, and investigate them as topological algebras. Finally, we provide a class of examples of (metrizable) commutative unital complete Arens-Michael algebras A and locally compact spaces X for which all these algebras differ from each other.

ON FRAMES FOR COUNTABLY GENERATED HILBERT MODULES OVER LOCALLY C*-ALGEBRAS

  • Alizadeh, Leila;Hassani, Mahmoud
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.2
    • /
    • pp.527-533
    • /
    • 2018
  • Let $\mathcal{X}$ be a countably generated Hilbert module over a locally $C^*$-algebra $\mathcal{A}$ in multiplier module M($\mathcal{X}$) of $\mathcal{X}$. We propose the necessary and sufficient condition such that a sequence $\{h_n:n{{\in}}\mathbb{N}\}$ in M($\mathcal{X}$) is a standard frame of multipliers in $\mathcal{X}$. We also show that if T in $b(L_{\mathcal{A}}(\mathcal{X}))$, the space of bounded maps in set of all adjointable maps on $\mathcal{X}$, is surjective and $\{h_n:n{{\in}}\mathbb{N}\}$ is a standard frame of multipliers in $\mathcal{X}$, then $\{T{\circ}h_n:n{\in}\mathbb{N}}$ is a standard frame of multipliers in $\mathcal{X}$, too.

ON LOCALLY B*- EQUIV ALENT ALGEBRAS

  • Kang, Soon-Ja
    • Honam Mathematical Journal
    • /
    • v.4 no.1
    • /
    • pp.167-172
    • /
    • 1982
  • Let A be a Banach $^{\ast}$-algebra and C(t) be a closed $^{\ast}$-subalgebra of A gengerated by $t{\in}A$. A is locally $B^{\ast}$-equivalent [$B^{\ast}$-equivalent] if C(t) [A] for every hermitian element t is $^{\ast}$-isomorphic to some $B^{\ast}$-algebra. It was proved that the locally $B^{\ast}$-equivalent algebras with some conditions is $B^{\ast}$-equivalent by B. A. Barnes. In this paper, we obtain the some conditions for a locally $B^{\ast}$-equivalent algebra to be $B^{\ast}$-equivalent.

  • PDF

K-THEORY OF C*-ALGEBRAS OF LOCALLY TRIVIAL CONTINUOUS FIELDS

  • SUDO TAKAHIRO
    • Communications of the Korean Mathematical Society
    • /
    • v.20 no.1
    • /
    • pp.79-92
    • /
    • 2005
  • It is shown that the K-theory of the $C^{\ast}$-algebras of continuous fields on locally compact Hausdorff spaces with fibers elementary $C^{\ast}$-algebras is the same as the K-theory of the base spaces. We also consider the slightly generalized case. Furthermore, we give some applications of these results.

K-THEORY OF CROSSED PRODUCTS OF C*-ALGEBRAS

  • SUDO TAKAHIRO
    • The Pure and Applied Mathematics
    • /
    • v.12 no.1
    • /
    • pp.1-15
    • /
    • 2005
  • We study continuous fields and K-groups of crossed products of C*-algebras. It is shown under a reasonable assumption that there exist continuous fields of C* -algebras between crossed products of C* -algebras by amenable locally compact groups and tensor products of C* -algebras with their group C* -algebras, and their K-groups are the same under the additional assumptions.

  • PDF

NONCOMMUTATIVE CONTINUOUS FUNCTIONS

  • Don, Hadwin;Llolsten, Kaonga;Ben, Mathes
    • Journal of the Korean Mathematical Society
    • /
    • v.40 no.5
    • /
    • pp.789-830
    • /
    • 2003
  • By forming completions of families of noncommutative polynomials, we define a notion of noncommutative continuous function and locally bounded Borel function that give a noncommutative analogue of the functional calculus for elements of commutative $C^{*}$-algebras and von Neumann algebras. These notions give a precise meaning to $C^{*}$-algebras defined by generator and relations and we show how they relate to many parts of operator and operator algebra theory.

APPROXIMATELY LOCAL DERIVATIONS ON ℓ1-MUNN ALGEBRAS WITH APPLICATIONS TO SEMIGROUP ALGEBRAS

  • Ahmad Alinejad;Morteza Essmaili;Hatam Vahdati
    • Communications of the Korean Mathematical Society
    • /
    • v.38 no.4
    • /
    • pp.1101-1110
    • /
    • 2023
  • At the present paper, we investigate bounded approximately local derivations of ℓ1-Munn algebra 𝕄I(𝒜), where I is an arbitrary non-empty set and 𝒜 is an approximately locally unital Banach algebra. Indeed, we show that if 𝒜B(𝒜, 𝒜*) and B𝒜(𝒜, 𝒜*) are reflexive, then every bounded approximately local derivation from 𝕄I(𝒜) into any Banach 𝕄I(𝒜)-bimodule X is a derivation. Finally, we apply this result to study bounded approximately local derivations of the semigroup algebra ℓ1(S), where S is a uniformly locally finite inverse semigroup.

The Universal Property of Inverse Semigroup Equivariant KK-theory

  • Burgstaller, Bernhard
    • Kyungpook Mathematical Journal
    • /
    • v.61 no.1
    • /
    • pp.111-137
    • /
    • 2021
  • Higson proved that every homotopy invariant, stable and split exact functor from the category of C⁎-algebras to an additive category factors through Kasparov's KK-theory. By adapting a group equivariant generalization of this result by Thomsen, we generalize Higson's result to the inverse semigroup and locally compact, not necessarily Hausdorff groupoid equivariant setting.

REDUCED CROSSED PRODUCTS BY SEMIGROUPS OF AUTOMORPHISMS

  • Jang, Sun-Young
    • Journal of the Korean Mathematical Society
    • /
    • v.36 no.1
    • /
    • pp.97-107
    • /
    • 1999
  • Given a C-dynamical system (A, G, $\alpha$) with a locally compact group G, two kinds of C-algebras are made from it, called the full C-crossed product and the reduced C-crossed product. In this paper, we extend the theory of the classical C-crossed product to the C-dynamical system (A, G, $\alpha$) with a left-cancellative semigroup M with unit. We construct a new C-algebra A $\alpha$rM, the reduced crossed product of A by the semigroup M under the action $\alpha$ and investigate some properties of A $\alpha$rM.

  • PDF