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NONCOMMUTATIVE CONTINUOUS FUNCTIONS

DoN HADWIN, LLOLSTEN KAONGA AND BEN MATHES

ABSTRACT. By forming completions of families of noncommuta-
tive polynomials, we define a notion of noncommutative continuous
function and locally bounded Borel function that give a noncom-
mutative analogue of the functional calculus for elements of com-
mutative C*-algebras and von Neumann algebras. These notions
give a precise meaning to C*-algebras defined by generator and re-
lations and we show how they relate to many parts of operator and
operator algebra theory.

1. Introduction

It is convenient and common to think of the elements of a C*-algebra
or a W*-algebra generated by elements {a1,ag, ...} to be “functions” of
a1, as,.... In the commutative case this can be made explicit. We want
to put this notion on a useful and solid mathematical foundation in the
noncommutative case.

Consider the algebra C of continuous complex-valued functions on
the set C of complex numbers. The algebra C has an identity and an
involution (conjugation). Furthermore, with the topology of uniform
convergence on compact subsets, C is topologized by a countable family
{|| |ln} of *-seminorms defined by

|1¢lln = sup {I¢(2)] :z€C,lz[<n}.

The set of *-polynomials in z (i.e. polynomials in z and Z) is dense in C.
Hence, relative to the topology induced by the seminorms above, C is the
closed unital *-algebra generated by the function z defined by z(\) = A.
However, this algebra is also closed under the operation of composition,
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which adds to its structure. There is also a natural functional calculus
for normal operators, in the sense that if T is any normal operator
on a Hilbert Space H, then there is a unique unital *-homomorphism,
¢ — ¢(T), from C into B(H) that sends z to T and is continuous with
respect to the topology of uniform convergence on compact sets on C
and the norm topology on B(H). In fact, this functional calculus makes
sense when 7' is any normal element of a unital C*-algebra. Moreover,
this functional calculus satisfies the following:

1. (¢o)(T) = ¢p(¢(T)) for every ¢, € C and every normal operator
T

2.C*T)={¢(T) :9p€C}.
3. w(¢(T)) = ¢(n(T)) for every normal operator T, every ¢ € C, and
every unital x~homomorphism 7 of C*(T).

For non-unital algebras, analogous results hold when we replace C with
{p€C :¢(0) =0 }. Similar results hold for m variables (m a cardinal),
if we replace C with a Cartesian product C™ of m copies of C with
the product topology, and replace C with the set C,, of all continuous
complex-valued functions on C™.

We also have the x-subalgebra C® of bounded functions in C. We
can obtain the functions in C? as truncations of functions in C. More
precisely, if » > 0, we can define the function 7. € C by 7.(2) = z if
|2]| <7, and 7.(2) = i if |z| > r. Then

Cb={r.0¢ :7r>0,6€C}.

The truncation relates to the functional calculus so that if T is a normal
operator, ¢ € C, and r > ||¢(T)||, then (7 0 p)(T') = ¢(T)).

One of the nice things about the functional calculus is that it reduces
problems about normal elements (families) in C*-algebras to problems
about continuous functions. Another nice thing about this functional
calculus is that it gives a way of talking about “comparable” or “anal-
ogous” elements in two C*-algebras generated by normal elements, a, b,
i.e., if ¢ € C, then ¢(a) in C*(a) somehow seems to “correspond” to ¢(b)
in C*(b).

In this note we provide a non-commutative analogue of the space Cp,.
We show that a special case of our construction may be identified with
the continuous decomposable functions defined in [3] and studied in [6].
We also provide an analogous construction where, in the single variable
case, singly generated von Neumann algebras play the central role and
the objects obtained are identifiable with the decomposable functions
defined in [3].



Noncommutative continuous functions 791

Suppose X is a nonempty set and let P(X) denote the free com-
plex unital involutive algebra generated by X. A typical element of
P(X) is a polynomial in free variables z1,z}, 22,23, ...,zn, 2}, Where
z; € X for each i =1,2,...,n. We refer to the elements of P(X) as
non-commutative *-polynomials. We define F(X) to be the class of
functions f : X — B(Hy), where B(Hy) denotes the algebra of all
operators on a Hilbert space ;. Thus the elements of F(X’) are in one-
to-one correspondence with the algebraic representations (i.e. unital
x-homomorphisms) of P(X) as operators on some Hilbert space. Given
p € P(X) and f € F(X), we write p(f) to denote the image of p un-
der the representation determined by f, i.e. p(f) is the polynomial p
with each indeterminate z replaced by the operator f(z) and each z*
replaced by f(z)*. For example, if X = {z} is a singleton, then F(X)
can be identified with the class of all Hilbert Space operators. If p(x)
is the polynomial 2% + 5z(z*)3, and f € F(X) with f(z) = T, then
p(f) = T2 + 5T(T")2.

Let N'(X) denote the family of functions mapping X into [0, c0); the
elements of N(X) will be called X-norms. If ni,ny € N(X) we will
write n; < ng in case ni(x) < na(z) for all z € X. Given f € F(X) we
define ny € N(X) by ng(x) = ||f(z)||, and call ny the X-norm of f.

There are several ways of generating new elements of 7 (X) from old
ones. The two most important for our considerations are via direct sums
and unitary equivalence. Specifically, if f and g are elements of F(X),
define f & g € F(X) by

(f®9)(z) = f(z) ® 9(),

so one has Hygy = Hf® Hgas well. If f € F(X)and U : H — Hy is a
unitary, then U* fU € F(X) denotes the function defined by

U™ fU)(z) = U™ f(z)U.

More generally, if n € N(X) and {f, :¢ €1} is a subset of F(X)
such that, for each « € I, ny, < n, we can define the direct sum E?e 1 f

by
® @
(Z ﬁ) (z) =) fil=)
el el
for each z € X.

It will often be sufficient to consider only representations of P(X) as
operators on a single Hilbert space H. For this purpose let F(X, B(H))
denote the subset of F(X') consisting of those functions mapping X into
B(H). We will let Hy denote a fixed Hilbert space whose dimension
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is the smallest infinite cardinal greater than or equal to the cardinality
of X. Thus if X = {z} is a singleton, then F(X, B(Hx)) is in one-to-
one correspondence with the operators on a fixed infinite dimensional
separable Hilbert space.

2. Noncommutative Borel functions

We will now define some locally convex topologies on P(X') and iden-
tify their completions. We will see that in each of the completions the
elements may be identified with a certain algebra of functions for which
there is a naturally defined functional calculus, just as there is for C.
However, this functional calculus has the advantage of being defined
for all operators. There are two key properties of this functional calcu-
lus that are satisfied by polynomials and which extend naturally to the
functions in the completions:

1. p(f @ g) = p(f) ® p(g) for every p € P(X) and f,g € F(X).

2. p(U*fU) = U*p(f)U for every p € P(X), f € F(X), and unitary

U.

Given f € F(X) and a € Hy, we define a family of seminorms ||-|} 7.«

on P(X) by

[Ipll £, = llp(f)exl]-
We call the resulting locally convex topology the point-strong topology
on P(X), and we denote this space by Ps(X'). We define another family
of seminorms || - || 4,4« on P(X) by

|Ipll .0 = (]| + |Ip(f)*edl,

refer to the resulting topology as the point-x-strong topology on P(X),
and denote the resulting space by P,_s(X).
We might intuitively think of P(X) as a subset of

II BH).
feF(x)
Then P,(X) (respectively, P._s(X)) can be viewed as P(X) endowed
with the relative topology inherited from the product strong (respec-
tively, *-strong) operator topology on ]] ;¢ FxyBH #). We could then
obtain the completions as the closures in []cr(x) B(Hy) with respect
to these topologies. However, although this view is intuitively helpful,
F(X) is not a set, and the cartesian product ] ;e £(x) B(Hy) is not de-
fined. Moreover, B(H) is not complete in the strong operator topology
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(i-e., the completion can be identified with the set of all linear transfor-
mation on H.) We can overcome the former problem with the following
simple observation, which shows we can replace [] ;¢ Fx) B (Hy) by the

PROPOSITION 1. Suppose f € F(X) and o € Hy. Then there exists
g € F(X,B(Hx)) and 3 € Hx such that

|| - ”f,a = H : ”g,ﬂ and H : Hf,a,* = “ : ”g,ﬁ,*-

Proof. Let H be the norm closure of {p(f)a :p € P(X)}. Then
dim(H) < dim(Hx) = d. It is clear that we can replace f with the
restriction of f to the reducing subspace H. Once this is done, we can
replace f with a direct sum of d copies of f and a with a vector with o
in one coordinate and 0 in the other coordinates. Once this is done we
have dim(Hf) = dim(Hx), which clearly implies that we can find the
required g and . O

We can now identify P(X) as a subset of the set §x of all func-
tions from F(X, B(Hx)) into B(Hx). We can topologize §x with the
topologies of pointwise convergence in the strong and *-strong opera-
tor topologies and the relative topologies on P(X) give us Ps(X) and
P,_s(X), respectively. The algebra §x is complete in the topology of
pointwise *-strong operator convergence (i.e., if S,T are linear trans-
formations on Hy such that (Sa, ) = (a,T0) for all o, 8 € Hy, then
the closed graph theorem implies that S and T are bounded). However,
S x is not complete in the topology of pointwise strong operator conver-
gence. Nevertheless, the next proposition shows that the completion of
Ps(X) can be identified with its point-strong closure in Fx.

PROPOSITION 2. Suppose that {p,} is a Cauchy net in Ps(X'). Then
for every f € F(X) there exists T € B(Hy) such that py(f) — T in the
strong operator topology.

Proof. Let f € F(X) be given. If o € Hy, then {py(f)a} is a Cauchy
net in H; and consequently it converges to some vector Tao € Hy. It
is clear that T is linear; we must show T is bounded. If T were not
bounded, then there would exist vectors o; € Hy such that 3, [|os]|2 <
oo but for which Y, {|Ta;||? = co. Let H be the infinite Hilbert space
direct sum of Hy, let g(z) = f(z) ® f(z) @ ..., and let & = (a1, a2, .. .).
Since pa(9)& = (pa(f)a1, pa(f)ae, .. .), we see that it is now impossible
for the net {px(g)&} to converge to a vector in H, contradicting the fact
that {px} is a Cauchy net in P4(X). Thus T is bounded. a
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The preceding proposition implies the analogue for P._(X'). Hence,
we can indeed identify the completion of Ps(X) with its point-strong
closure in §x, and we can identify the completion of P,_¢(X) with its
point-*-strong closure in §y. Although the topologies are different, we
will see that the closures of Ps(X) and P,_,(X) in Fx give the same
easily identifiable subset of Fx.

We define B(X) as the set of all ¢ € Fy such that, if f,g € F(X,
B(Hx)), M and N are closed linear subspaces of Hy that reduce f and
g (respectively), then

1. M reduces ¢(f) and N reduces ¢(g), and
2. ifU : M — N is unitary, and U*(g9|n)U = f|m, then U*(¢(g)|n)U
= ¢(f)|m-
Note that if ¢ € B(X), we can unambiguously extend ¢ to a function
1) whose domain is

subF (X, B(Hx)) = | J{F (X, B(M)) : M is a closed subspace of Hx}
defined, for g € F(&X, B(M)), by
P(9) @ [$(0)|p2] = ¢(g & 0).

Moreover, the function 1 satisfies the properties

3. U(f@g) =v(f) ®Y(g),

4. Y(U*AU) = U*y(A)U, whenever M and N are closed linear sub-

spaces of Hx, A € B(N) and U : M — N is unitary.

Conversely, if ¢ is a function on subF (X, B(Hx)) satisfying (3) and
(4) above, then ¢ = ¥|r(x,B(1,)) is in B(X). The functions ¢ are the
decomposable functions introduced in [3] and studied in [6], [7] and [8].

The following result shows that the completions of Ps(X) and P,—_s(.X)
are naturally identified with B(X).

PRrROPOSITION 3. The point-strong closure of P(X) in §x equals the
point-x-strong closure of P(X) in Fx equals B{X).

Proof. The preceding proposition implies that the point-*-strong clo-
sure of P(X) is contained in the point-strong closure of P(X). It is clear
that the point-strong closure of P(X) is contained in B{X). Thus it
suffices to show that B(X) is contained in the point-*-strong closure of
P(X). Suppose ¢ € B(X), and let ¢ denote its natural extension to
subF (X, B(Hy)) described above. Suppose U is a point-*-strong neigh-
borhood of ¢. Then there is an € > 0, fi, f2,..., fn in F(X, B(Hx))
and a1, 02,...,a, in Hy such that I/ contains all v € Fx such that

ly(fe)ow — d(fr)owll + [17(fe) ar — S(fr) o] < €
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for 1 € k < n. Since Hxy is infinite dimensional, there is an f in
F(X,B(Hxy)) that is unitarily equivalent to f1 @ fo @ - @ f,, with a
unitary that sends oy $as ® - D ay, to a vector a. It follows from part
(1) of the definition of B(X) that any subspace that reduces f must
also reduce ¢(f). It follows that ¢(f) must belong to the von Neumann
algebra generated by f(X), whence there is a p € P(X) such that

p(Fe — o(fall + llp(f) o — ¢(f) el <e
and it follows that p € U. O

REMARK. It follows from the preceding Proposition that B(X) is the
point-weak operator closure of P(X) in Fy, but it seems unlikely that
this coincides with the completion of P(X) with respect to the family

{Il- 15,08} defined by

llpllf.08 = [(p(f)ex, B)],
where f € F(X) and o, 8 € Hy.

We call the elements of B(X) noncommutative Borel functions with
variables in X. Note that we have a functional calculus for elements ¢
in B(X) and every element in F(X). Namely, if ¢ € B(X) then there is
a Cauchy net {py} in P._s(X) converging in the point-*-strong topology
on Fx to ¢. However, if f € F(X), then {px(f)} is *-strongly Cauchy
in B(Hy), so we can define

¢(f) = 1if\11PA(f)-

Note that, since every f is a direct sum of functions g such that
dimH, < dimHy, it follows that the definition of ¢(f) is independent
of the choice of {px}. This functional calculus has many pleasant prop-
erties; the ones in the next proposition follow immediately from the
definition.

PROPOSITION 4. Suppose ¢ € B(X). Then
1. if f € F(X) and U : H — Hj is unitary, then
o(U™fU) =U"(f),
2. ifn e N(X) and {f, : « € I} C F(X) with each ny, < n, then
$(Tier f) = T2 6().

Note that condition (2) in the preceding proposition holds if and only
if it holds for the direct sum of pairs of elements of F(X’). The following
proposition comes from the relationship between decomposable functions
and the elements of B(X) described above. Since F(X) is not a set, it is
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not correct to talk about an operator-valued function on F(X). Instead,
we can view F(X) as a category of mappings, and talk about a functor
n from this category to the category of Hilbert space operators, i.e., for
every f € F(X), n(f) is an operator on some Hilbert space.

PROPOSITION 5. If i is an operator-valued functor on F(X) such
that, for every f,g € F(X),

n(f & g) =n(f) &ng),
then there is a unique ¢ € B(X) such that, for every f € F(X),

n(f) = ¢(f)-
In other words, there is a net {py} in P(X’) such that, for every f € F(X),

PA(f) — n(f) =-strongly.

Proof. In order to show the restriction of n to subF (X, B(Hy)) is a
decomposable function, it suffices to show that, for each f € F(X') and
each unitary U,

n(U* fU) = U*n(§)U.
It follows from the hypothesis that, for each f € F(X) and each reducing
subspace M of f(X), M must also reduce n(f). It follows from the
double commutant theorem that n(f) € W*(f(X)) for each f € F(X).
Thus

n(f) @ nU*fU) =n(f @ U™ fU) € W¥([f @ U fU|(X)),
which implies that n(U* fU) = U*n(f)U. O

Note that the preceding proposition immediately shows that, via
pointwise operations, B(X) is a *-algebra with identity.

The following examples show the power of the preceding proposition.
Later we will see even more ways of constructing noncommutative Borel
functions. The nice thing about the functional calculus viewed this way
is that it gives a formula for certain constructions.

EXAMPLE. Suppose X = {z}, and for each f € F(X), n(f) is the
partial isometry in the polar decomposition of f(z). It is clear that
71 satisfies the condition of the preceding proposition. Hence there is
a noncommutative Borel function ¢ such that, for every f € F(X),
n(f) = ¢(f). Thus there is a net {pr} of *-polynomials such that,
for every Hilbert space operator T', {pA(T)} converges *-strongly to the
partial isometry part of the polar decomposition of T'.

EXAMPLE. Suppose X is arbitrary, and we define n(f) to be the or-
thogonal projection onto the closed linear span of Uze yRan f(z). Again
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it is clear that n satisfies the condition of the previous proposition, so
there is a noncommutative Borel function ¢ so that, for every f € F(X),

n(f) = ¢(f)-

EXAMPLE. The condition ¥(U*TU) = U*(T)U in the definition of
decomposable function cannot be omitted in spite of its omission in the
preceding proposition. Suppose X = {z}, and suppose ¥ is a function on
subB(Hy) defined so that ¢(T") = 0if T is an irreducible operator whose
domain is Hy, and ¥(T) = T otherwise. Then, whenever T = A @ B,
W(T) = v(A) ®¢(B). However, ¢ is not a decomposable function.

On the other hand, if 5 is a functor on F(X) defined by n(f) = 0 if
f is irreducible and n(f) = f if f is reducible, then we have n(U* fU) =
U*n(f)U for every f € F(X) and U is unitary, but 7 does not satisfy
the condition in the preceding theorem.

We can also talk about multivalued noncommutative Borel functions
and compositions. Suppose X and ) are sets. We define B(), X) to be
the set of all functions from Y into B(X). Suppose w € B(),X) and
f e F(X). We define wf € F(Y) by

(Why) = [wI(f).

In view of the preceding proposition we can define, for ¢ € B(Y), the
composition ¢ ow € B(X) as the noncommutative Borel function such
that, for every f € F(X)

(¢ow)(f) = p(wf).

For example, suppose J = {y1,42}, w(y1) = 91, w(y2) = ¥2, and ¢ is
the polynomial p(yi,y2). Then, for any f € F(X),

(¢ 0 w)(f) = p(¥1(f), ¥(f))-

Another type of composition is in the case in which a noncommuta-
tive Borel function ¢ has the property that ¢(f) is always normal with
spectrum contained in some subset K of C, and ¢ : K — C is Borel
measurable and bounded on bounded sets. Then the composition ¢ © ¢
is defined by

(€ o d)(f) = C(d(£));

where the application of ¢ comes from the Borel functional Calculus for
normal operators.

A simple application of composition is truncation. Suppose 0 < r <
00, and define the function ¢, : [0,00) — [0,1] by {-(t) = 1 when 0 <
t < r and ((t) = 72/t when r < t. If A is an operator, we define
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7 (A) = [(-(AA*)]A. If ¢ € B(X) we define the r-truncation of ¢ to be
7 o ¢. It is clear that

sup {||(rr o )(f)I| : fEeF(X)}<r

and that (7, o ¢)(f) = ¢(f) whenever ||¢(f)]| < r.
We define B%(X) to be the bounded elements of B(X), i.e., ¢ € BY(X)
if and only if ¢ € B(X) and

sup {{l¢(HIl : f e F(X) } = |l¢ll < 0.

It is clear that B?(X) is a C*-algebra.

The next result generalizes the fact that if N is a normal operator
on a separable Hilbert space, then W*(N) is the set of all operators of
the form f(N), where f : C — C is Borel measurable and bounded on
bounded sets.

PROPOSITION 6. Suppose f € F(X). Then
W (f(X)) ={o(f) 4 €BX)}={o(f) :4€BX) }.

Proof. It follows from Proposition 4 and the von Neumann double
commutant theorem that {¢(f) : ¢ € B(X) } C W*(f(X)). Clearly

{6(f) 0eBX) } C{o(f) : ¢ €BX)}.

Next suppose A € W*(f(X)) and let 7 = ||A||. By Kaplansky’s density
theorem there is an ultranet {pn} of polynomials in P(X) such that
pa(f) — A in the weak operator topology and such that |[pa(f)|| < r
for every A. Then ¢y = 7, o p) defines an ultranet in B°(X). Since the
closed ball with radius » of all operators on a Hilbert space is compact
in the weak operator topology, it follows that, for every g € F(X), the
ultranet {¢,(g)} is weak operator convergent to an operator ¢(g). It
follows from Proposition 5 that ¢ € B(X). However, it is clear that
l|pl| < r; whence, ¢ € B?(X). Since ¢(f) = A, we have shown that

W*(f(X)) c{e(f) : ¢ € B(X) },

and the proof is complete. O

Note that every von Neumann algebra is generated by a subset that
can be expressed in the form f(X') for some X. Thus our results apply
to arbitrary von Neumann algebras.
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3. Parts, functionals and ideals

In this section we want to discuss the notion of part (e.g., the normal
part of an operator), closed ideals in B(X), continuous linear functionals
on B(X), and central projections in B(X), as well as their interrelation-
ships.

We begin with the notion of disjointness. A (direct) summand of an
element f of F(X) is the restriction of f to a nonzero reducing subspace.
We say that two elements f,g € F(X) are disjoint, denoted by f o g, if
f and g have no unitarily equivalent summands, i.e., there do not exist
nonzero subspaces M and N such that M reduces f and N reduces g
with f|as unitarily equivalent to g|y. Disjointness has been studied in
terms of representations of C*-algebras and von Neumann algebras (see
[1]), and it has been studied for single operators by J. Ernest [5]. At
the opposite extreme, we say that f is weakly contained in g, denoted
by f < g, if no summand of f is disjoint from g. We say that f and g
are weakly equivalent, denoted by f ~ ¢, if f € gand g <« f.

More generally, if £ is a nonempty subclass of F(X'), we say f is
disjoint from £, denoted fo€ if, for every g € £, fog, and wesay f < £
if no summand of f is disjoint from £. We say that two summands f1, fo
of f are orthogonal, denoted by f; L fe, if the Hilbert spaces they live
on are orthogonal. The following proposition, which is taken from [5]
and [1], contains most of the important properties of weak containment
and disjointness.

PROPOSITION 7. Suppose f,g € F(X), fi,fs are summands of f,
and £ is a nonempty subclass of F(X). Then

1. if f1 ¢ fo, then f1 L fo,

2. f « & if and only if, f is a direct sum of summands of elements
of €,

3. if £ is bounded by some n € N(X), then fo & <= foZ%egh
and f <& <= <Y A,

4 fog — W((f®g)(X) = WH(F(X)) & W*(g(X)),

5. (lebesgue decomposition Theorem) There are f,, fs € F(X) such
that f = fo @ fs, fa K E, and fso &,

6. W*(f(X)) is a factor von Neumann algebra if and only if no two
summands of f are disjoint,

7. f < g if and only if, for some cardinal m, f is unitarily equivalent
to a summand of g™,

8. f =~ g if and only if, for some cardinal m, f(™ and g(™ are
unitarily equivalent.
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It is well known that every contraction operator can be uniquely
decomposed as the direct sum of a unitary operator (the unitary part)
and an operator having no unitary direct summands (the completely
non-unitary part). This is an instance of a part property of operators,
the class of unitary operators occupying what we call a part class of
operators. Part properties for operators were studied and completely
characterized in [3]. We show that a similar characterization holds in
our more general setting. We say that a nonempty subclass P of F(X) is
a part class if P is closed under unitary equivalence, and every f € F(X)
can be uniquely decomposed into the direct sum of an element in P (the
P-part of f) and an element having no direct summands in P (the
completely non-P-part of f).

A nonempty subclass £ of F(X) is equationally defined if there is a
nonempty subset W of B(X’) such that

E={f€F(X) :VpeW o(f)=0}.

PROPOSITION 8. Suppose P is a subclass of F(X) that is closed under
unitary equivalence. The following are equivalent:

1. P is a part class,

2. the direct sum of a point-norm bounded subset of F(X) is in P if
and only if each summand is in P,

3. P is equationally defined,

4. there is a (selfadjoint) projection p in the center of B(X) such that,

P={feFX) :p(f)=0}.

Proof. (3) = (2) This clearly follows from part (2) of Proposi-
tion 4.

(2) = (1) Let M be the direct sum of a maximal orthogonal
collection of subspaces £ that reduce f for which the restriction of f to
L is in P. Write f = faq @ g relative to M @& M*. It follows from (2)
that f € P and gQP. It follows from Proposition 7 that any summand
of f that is in P must be orthogonal to g. Hence M is the unigque
maximal reducing subspace £ for f such that the restriction of f to £ is
in P. Hence the decomposition of f into a summand in P and a sumand
disjoint from P is unique. Thus P is a part class.

(1) = (4) For each f € F(X) we define p(f) € B(Hy) as follows:
by the hypothesis in (1) we may write f = far @ g relative to a unique
decomposition M@ ML of H # such that for € P and g has no summand
in P. We define p(f) to be the orthogonal projection onto ML. We can
easily verify that p(U*fU) = U*p(f)U and p(f1 @ f2) = p(f1) @ p(f2),
from which we deduce by Proposition 5 that p € B(X). This proves (4).
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Since the proof of (4) = (3) is trivial we are done. O

COROLLARY 9. Assume that G C F(X). The smallest part class
containing G is {f € F(X) : f< G }.

COROLLARY 10. A subset G C F(X) is a part class if and only if G is
the class of all f’s in F(X) that are unitarily equivalent to direct sums
of elements of G N F (X, B(Hx)).

COROLLARY 11. There is a one-to-one correspondence between the
central projections in B{X') and all part classes.

Using Proposition 6 we know that each f € F(X') induces a surjective
unital x-homomorphism 7y : B{(X) — W*(f(X)) defined by ms(¢) =
#(f). We can use the preceding theorem to show that central projections
in W*(f(X)) can be lifted to central projections in B(X). Moreover,
elements in part classes can always be lifted to elements in the same
class, e.g., projections can be lifted to projections and normal elements
can be lifted to normal elements.

ProposITION 12. Suppose f € F(X). Then

1. if P is a central projection in W*(f(X)), then there is a central
projection p € B(X) such that p(f) = P,

2. if ¢ is a noncommutative Borel function of one variable such that
P(A) = 0 for some A € C, if A € W*(f(X)), and ¥(A) = 0, then
there is a ¢ € B(X) such that ¢(f) = A and Yo ¢ = 0.

Proof. 1. Suppose f : X — B(H) and P is a central projection
in W*(f(X)). Then, relative to the orthogonal decomposition H =
ker P @ ranP, f = g ® h. Thus W*(f(&X)) = W*(g(X)) & W*(h(X)),
which means goh. Let P = {e € F(X) :e < g }. Then, by Corollary 9,
P is a part class, and, by Proposition 8, there is a central projection
p € B(X) such that P = {e € F(X) : p(e) =0}. Hence, p(g) =0. On
the other hand, since p is central, p(h) is a projection commuting with
h, and if ho is the summand Al o(n), then p(ho) = 0, which implies
ho < g. Since g o h, it follows that ker p(h) = {0}, implying p(h) = 1.
Thus p(f) = p(g) ® p(h) = P.

2. Suppose A and 9 are as given. Choose n € B(X) so that n(f) = A,
and let

Q= {ecB(X) (ne) =0}
Then Q is a part-class and there is a central projection p € B(X) such
that
Q={ecB(X) :p(e) =0}
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The desired ¢ is defined by

¢=(1—pn+ .
.

Proposition 6 makes B(X) (or B®(X)) seem like a von Neumann al-
gebra. Using the notion of composition, it is clear that every normal
element (¢p¢p* = ¢*¢) in B(X) has spectral projections. Moreover, we
can use Proposition 6 to decompose B{X) into the different types (i.e.,
I,I,, 15,11y, I11).

PROPOSITION 13. Foreach by in {II,I1s,I11,1,15,11,I2,...} there
is a central projection P, in B(X') such that for every f € F(X), Py(f) is
the central projection in W*(f(X)) onto the type fj part of W*(f(X)).

Proof. Note that “Py(f) is the central projection in W*(f(X)) onto
the type § part of W*(f(X))” defines an operator-valued functor on
F(X). Clearly, P,(f ® g) = FB/(f) ® Bl(g) always holds. Thus, by
Proposition 6, P, € B(X). Since the operations in B(X) are pointwise,
P, is a central projection. 0

We next look at continuous linear functionals on B{(X). There are
two natural topologies on B(X), namely, the point-strong and point-x-
strong topologies. There is also the point-weak topology determined by
the seminorms p;.,, (f € F(X), and u,v € Hy) defined by

pf,u,v(¢) = |(¢(f)’ u, U)’

Although these topologies are distinct, they have the same continuous
linear functionals, and thus the same closed convex sets.

PROPOSITION 14. Suppose 7 : B(X) — C is a linear functional that
is continuous with respect to the point-+-strong topology. Then there is
an f € F(X,B(Hx)), and u,v € Hy such that, for every ¢ € B(X),

7(¢) = (¢(f)u,v).

Proof. Assume 7 is a point-*-strong continuous linear functional on
B{X). It follows that there exists a positive number M > 0 and there
exist finitely many seminorms || - ||, e« (¢ = 1,...,k) such that f; €
F(X,B(Hx)) and

k
(@) < ML [ 112112 4
=1
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for all ¢ € B(X). We can let M = 1 by replacing each o; with Mo;.
let f=H1D.. D franda=a; ®...D a, then we have

[Re7(¢)] < [7()] < MV[[o(f)al? +[I¢(f)*al?

for all ¢ € B(X), and if we use a unitary operator to identify ’Hgf) with
Hx, we may replace f and a with elements of F(X, B(Hy)) and Hy,
respectively. Assuming this has been done we let K be the closure of

Ko={(¢(fle,d(f)*c) : ¢ € B(X)}
in Hy ® Hy, so K is a real Hilbert subspace of Hy ® Hx. The mapping

(¢(f)e, ¢(f)* ) — Rer(¢)

is a real continuous functional on Ky that extends to a real continuous
functional on K. It follows that there exist vectors 81,82 € Hx such
that

Re7(¢)

I

< d)(f)aaﬂl >+ < ¢(f)*aa52 >
Re < ¢(f)o, b1 > +Re < ¢(f) B2, ¢ >
Re < ¢(f) ® ¢(f)(a + B2), (61 + @) > .

Since the real part of the mapping ¢ —< ¢(f) ® ¢(f)(a D B2), (81 &
a) > equals that of 7 we conclude that these two functionals are equal.
Using a unitary to identify Hx @ Hxy with Hx we may replace f @ f
with an element of 7 (X, B(Hx)) and replace a @ 82 and 8; ® o with
elements of Hy, completing the proof. O

Il

We can now characterize the closed ideals in B(X). Note that this
result automatically implies its analog for von Neumann algebras.

PROPOSITION 15. Suppose T C B(X). The following are equivalent:

1. T is a point-strong closed two-sided ideal in B{X},
2. there is a part-class P in F(X) such that

I={¢eBx) :VfeP ¢(f)=0}
3. there is a central projection P € B(X) such that
T = PB(X).

Proof. (1) = (2) Let P be the class of all f € F(X) such that
&(f) = 0 for every ¢ € Z. Let J be the set of all ¥ € B(X) such
that, ¥(g) = 0 for every g € P. Clearly, Z C J and J is point-strong
closed. Assume that Z # J and choose ¢ € J with ¢ ¢ Z. It follows
from the Hahn-Banach theorem that there is a point-strong continuous
linear functional 7 on B(X) such that 7|z = 0 and 7(¥) = 1. It follows
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from the preceding proposition that there is an f € F(X, B(Hx)), and
u,v € Hy such that, for every ¢ € B(X),

7(¢) = (¢(f)u,v).
Let M = sp{o(f)u : ¢ €T }. Since 7 is an ideal in B(X), M reduces
W*(f(X)). Relative to Hy = M ® M+, write f = g@h and u = y D w.
It follows from the definition of u, v and M that v € M+ and ¢(f)w =0
for all ¢ € Z. Since ¥(f) = ¢¥(g) ® ¥(h), it follows that

B(fyw = p(R)w £ 0.
Let N = sp(W*(f(X))w) and let fo be f restricted to N. It follows
from the fact that Z is an ideal that for every ¢ € 7 and every p € B(X)
that
p(fo)lp(f)w] = (¢p)(f)w = 0.

Thus, ¢(fo) = 0 for every ¢ € Z. However, ¥(fo) # 0, since ¢(fo)w =
¥(f)w # 0. This contradicts ¢ € J. Thus (2) must be true.

(2) = (3) Assume (2) is true, and let P be the central projection in
B(X) such that, for every f € F(X), P(f) is the orthogonal projection
onto the P-part of f (see Proposition 8). It follows from (2) that

pETL <« VfePs(f) =0 <
Ve FX)1-P)p(f)=0 < (1-P)¢p=0.
It follows that Z = PB(X), which is (3).
(3) = (1) This is obvious. O

We can put together some of the preceding results into a Galois-type
framework. If W C F(X), we define

Wh={geB(X) :VfeW ¢(f) =0}

Clearly, W+ is a point-strong closed two-sided ideal in B{X). If S C
B(X), we define

St={feF(X) :¥peS ¢(f)=0}.

It is clear that St is a part class. The usual Galois relationships hold,
eg, Wcwtt 8§ c sttt wt =will sl = §loil and L reverses
inclusions. The gist of the preceding results can be summarized in terms
of this Galois correspondence.

PRroPOSITION 16. There is a one-to-one correspondence between part
classes in F(X) and point-strong closed two-sided ideals in B(X) that as-
sociates each part class P with the ideal P+. The inverse map associates
each point-strong closed two-sided ideal T with I+. More precisely,
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1. PL+ =P for every part class P,
2. T++ =T for every point-strong closed two-sided ideal T,
3. if P is the central projection associated in Proposition 8 with the
part class P, then
Pl =(1-P)B(X).
More generally, if W C F(X) and § C B{X), then
LWH ={feFXx) :f<W},
2. S+ is the point-strong closed two-sided ideal generated by S.

The minimal projections and minimal central projections in B{(X')
can easily be characterized.

ProroSITION 17. The following are true.

1. A projection P in B(X) is minimal if and only if there is an irre-
ducible f € F(X) and a ¢ € B(X) such that ¢(f) is a rank-one
projection such that

P =9¢Q,

where () is the central projection corresponding to the part-class

{9eF(x) g« [}

2. A projection P in B(X) is a minimal central projection if and only
if there is an f € F(X) such that W*(f(X)) is a factor such that
P is the central projection corresponding to the part-class

{9eF(Xx) g f}.

The following corollary is a consequence of the fact that minimal
central projections correspond to maximal ideals.

COROLLARY 18. The maximal point-strong closed ideals of B(X) are
precisely the sets {f}* with W*(f(X)) a factor.

We conclude this section with a general technique for constructing
elements of B(X).

LEMMA 19. Supposen € N(X) and G = {f» : A € A} is a subset of
{f € F(X,B(Hx)) :nsy <n} that is disjoint in the sense that a, 3 €
A, o # B implies fo o f3. Suppose, for each A € A, Ay € W*(fr(X))
and

M =sup ||Ax]| < o0.
AEA

Then there is a ¢ € B°(X) with ||¢|| = M such that, ¢(fy) = A,
for each A € A. Moreover, if G is a maximal disjoint subset of {f €
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F(X,B(Hx)) : ny < n}, then the restriction of ¢ to {f € F(X,B(Hx)) :
ny < n} is unique.

Proof. Let f = Zf‘\ae afrand A= Z?e A Ax. Then, by Proposition 7,

57
W*(F(X)) =Y W*(f1r(X)).

A€EA

Thus A € W*(f(X)) and ||A|| = M. Hence, by Proposition 6, there is
a ¢ € B°(X) with ||¢}| = M such that ¢(f) = A. Thus, for each X € A,
#(fr) = Ay. If G is maximal, then

F<{fn : e}

for each f € F(X) with ny < n, which implies the asserted uniqueness.
a

The finiteness condition on X in the following proposition can be
dropped at the expense of replacing {n;} with a well-ordered (any or-
dering) cofinal subset of N (X).

PRrROPOSITION 20. Suppose X is finite and {ng} is a cofinal sequence
in N(X). Assume, for each positive integer k, that Gy is a disjoint
collection such that whenever f € Gy, and 1 < j < k, f has no summand
g with ng < nj. Suppose, for each f € UGy, that Ay € W*(f(X)) and

My, = sup ||Ay]] < 0.
febk

Then there is a ¢ € B{X) such that, ¢(f) = Ay for each f € UpGy.

Proof. Tt follows from the preceding lemma that, for each positive
integer k, there is a ¢ € B(X) such that ¢p(f) = Ay for each f € Gy.
For each k, define

Pr={feF(X) : f< G}

Then, by Proposition 8, there is a central projection Py € B{X) such that
Pi(f) = 1 when f € P and Pi(f) = 0 when f o Gg. The assumption on
the Gi’s implies that {Py} is an orthogonal sequence in B(X). Clearly,

the sum
> Pt
k=1

is point-strong convergent to the required ¢. O
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We can apply the preceding result to subnormal tuples. We call an
element f € F(X) normal if W*(f(X)) is commutative. An element
g € F(X,B(H)) is subnormal if there is a Hilbert space K containing H
and a normal f € F(X, B(K)) such that each f(z) leaves H invariant,
and the restriction of f to H is ¢g. In this case we say that f is a normal
extension of g; if K is the smallest invariant subspace for f(X) that
contains H, then f is a minimal normal extension of g. A subnormal ¢
is pure if g has no normal direct summands. It was shown in [11] that if
X is finite and g is a subnormal element in F(X'), then there are subsets
{D; :zeX}and{FE; :z€ X} of W*(g(X)) such that the function

f defined by
s = (59 2

is a normal extension of g, and ny < n. Moreover, it was shown in [11]
that if g is pure, then f is the minimal normal extension of g We can
use noncommutative Borel functions to show that there is a formula for
the D.’s and the E,’s.

PROPOSITION 21. Suppose X is finite. Then there are subsets {¢, :
x € X} and {1y :x € X } of B{X) such that

1. for every pure subnormal g in F(X)

_ [ 9(z) ¢(9) )
f@) ( 0 o)
is a minimal normal extension of g, and
2. for every normal g in F(X) and each x € X we have ¢,(g) =

¥2(9) = 0.

Proof. Define the sequence {nx} in N(X) by ni(z) = k. Since X is
finite, {ny} is cofinal in A (X). Let G; be a maximal disjoint collection
of pure subnormal elements g in F(X') with ny < n, and for each k > 1
let G be a maximal disjoint collection of pure subnormal elements g in
F(X) with ng < ng and go{h € F(X) :np <ng_1 }. It follows from
Proposition 6 that there are subsets {¢, 1z € X } and {¢p, :2z € X}
of B(X) such that, for each positive integer k and each g € U32,Gy we

have
9(z) 2(9) )
z) = .
f@) ( 0 ¥i9)
is a minimal normal extension of g. However, if g is an arbitrary pure

subnormal element of F(X'), we can write

g=gl@92@"'7
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with ng, < ny for each positive integer k, and such that, for k£ > 1,
gro{h e F(X) :np <ng_ }

Since each g, is a pure subnormal element, it follows from the definition
of the Gy’s that, for each positive integer k,

gk K Gy

It follows that (1) above is true.
Since the class P of pure subnormal elements in F(X) is a part class,
there is a central projection P € B(X) such that

Pt =(1-P)B(X).

If we replace each ¢, and 9, with P¢, and P, respectively, then (1)
remains true and (2) is true, since P(g) = 0 for every normal g. O

4. Noncommutative continuous functions

We will now define two new families of seminorms on P(X). The first
family of seminorms is indexed by the elements of F(X); given f € F(X)
and p € P(X), define ||p||; = |[p(f)||. The second family of seminorms
is indexed by the elements of N (X); given n € N(X) and p € P(X),
define

llplln = sup{|lplly :ns<n}.
Given f € F(X) we have ||p|lf < ||plln,;, so the two locally convex
topologies are related. We will soon see that the two topologies are
actually equivalent. We begin with an analogue of Proposition 1.

PROPOSITION 22. If g € F(X), then there exists f € F(X,B(Hx))
such that ||p||; = ||p||4 for all p € P(X).

Proof. Let A= {p(g9) :p € P(X)} and use Zorn’s lemma to obtain
a maximal collection of vectors a; € Hy (¢ € I for some index set [) for
which the family of subspaces {'Hi =Aa; i€l } form an orthogonal
family. By maximality we have

Hy = PH..
el
Furthermore, for each ¢ € I it is true that H; is a reducing subspace for
every operator p(g) and the dimension of each space H; does not exceed
the dimension of Hy.
Let Q(X) C P(X) denote the set of polynomials with complex ratio-
nal coefficients (i.e., coefficients in Q + Q), so the cardinality of Q(X)
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does not exceed the smallest infinite cardinal greater than or equal to
that of X. For each p € Q(X) there exists a countable subset I,, C I
such that ||p(g)|| is equal to the norm of p(g) restricted to the space
@icr, Hi- I J = U,eqr) Ip) then the dimension of @D;cs Hi still does
not exceed the dimension of Hy and we have that ||p(g)|| is equal to
the norm of p(g) restricted to the space @,.;H; for all p € Q(X),
and hence for all p € P(X). Write ¢ = g1 @ go relative to the de-

composition Hy = (®ieJ 'Hi) D (@ieJ Hi), let U : @;c;Hi — Hx
be an isometry, and let f = UgiU* @ 0 relative to the decomposition
Hx = Ran(U) @ Ran(U)*. We now have for every p € P(X) that

o)1 = llp(g)ll = IUp(g))U*|| = |[p(Ug1U")|| = ||Ip(F)II-
O

PROPOSITION 23. For everyn € N'(X) there exists f € F(X,B(Hx))
such that n(f) =n and ||p||; = ||p||» for all p € P(X).

Proof. Assume n € N(X). As in the preceeding proof, let Q(X) de-
note the set of polynomials p € P(X) with coefficients in Q+iQ. Clearly,
the cardinality of Q(X) equals dim(Hy). It follows from Proposition 1
and the definition of ||p||, (taking countable direct sums) that, for each
p € Q(X) thereis an f, € F(X, B(Hx)) with ny, < n and ||p||f = ||p||n-
We then choose f € F(X, B(Hx)) that is unitarily equivalent to the di-
rect sum of all the fp’s (p € Q(X)). Then ||p||f = ||p|| for all p € Q(X),
and thus for all p € P(X). O

We use the symbol P,(X) to denote the locally convex space that
arises from either of the two equivalent family of seminorms. As with
Ps(X) and Py—s(X), the completion of P,,(X) may be identified with the
closure of P(X) in

II  BH)p,

feF(X,B(Hx))

this time when each B(Hy) carries to operator norm topology. We will
use the symbol C(X) to denote this closure, which reflects our view of
this space as a noncommutative version of C. Since the norm topology
is coarser than the strong operator topology, we can (and do) view C(X)
as a subset of B(X). It is a consequence of Proposition 22 that the
closure of P(X) in [];cr(x,pr)) B(Hy) is isomorphic to C(X). We
now characterize which elements of B(X) are actually in C(X). If S
is a subset of a C*-algebra, we let C*(S) denote the smallest unital
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C*-algebra containing S and let C§(S) denote the smallest C*-algebra
containing S.

PROPOSITION 24. If ¢ € B(X), then the following are equivalent.

1. ¥ € C(X),
2. there is a net {p»} in P(X) such that

1%(f) = pa(f)I| = 0

uniformly on norm-bounded subclasses of F(X),
for every f € F(X, B(Hx)) we have v(f) € C*(f(X)),
4. for every f € (X, B(Hx)) and every representation

™ C*(f(X) U{¥(f)}) - B(Hx)

we have m(y(f)) = ¢(mo f),
5. for every n € N(X), the restriction of ¢ to

{f e F(¥,B(Hx)) :ny<n}

is continuous with respect to the topology of pointwise norm con-
vergence on F (X, B(Hx)) and the norm topology on B(Hx),
6. for every n € N(X), the restriction of ¥ to

{feF(X,B(Hy)) :ny<n}

is continuous with respect to the topology of pointwise *-strong
convergence on F(X, B(Hx)) and the weak operator topology on
B(Hy).

Proof. (3) = (1) Let U be a neighborhood of ¢ in B(X) with respect
to the topology of pointwise norm convergence. By Proposition 1 we
may assume there exist fi, f2,..., fi € F(X,B(Hx)) and € > 0 such
that

b

U={peB(X) :|lp(fi) —d(f)ll <efor1<i<k}

Let f=fi® fo®---® fr and choose g in F(X, B(Hy)) so that g is
unitarily equivalent to f. Then ¢¥(g) € C*(g(X)) by our hypothesis, and
consequently

V() =¥(fi) ®¥(f2) ®-- & Y(fi) € C*(f(X)).
It follows that there exists a polynomial p such that

max ||v(fi) — p(fi)ll = [[¥(F) —p(NIl <e,

1<i<k

so ¢ € C(X).
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(6) = (3) Suppose f € F(X,B(Hx)) and {Ux} is a net of unitary
operators such that

IUAf(z) = F(z)Ux|| — 0

for every z € X. It follows that U} fU) — f in the topology of pointwise
norm convergence. Since ny = n(y; sy,) for all A, we have by (5) that

1%(f) = UR LU = [[0(F) = U (U = Uz (F) = % (£)UAI — 0.

It follows from the asymptotic double commutant theorem [7] that

¥(f) € C*(F(X)).

(4) = (3) Suppose f € F(X,B(Hx)) and ¥(f) is not in C*(f(X)).
It follows that there is a continuous linear functional n on C*(f(X) U
{¥(f)}) such that n(¢(f)) # 0 while n vanishes on C*(f(X)). Hence
there is a representation

™ CT(f(X) U{y(N)}) — B(Hx)

and vectors a, 3 € H, such that

n(T) = (r(T)e, B)

for every T € C*(f(X)U{¥(f)}). (One sees this by writing an arbitrary
functional as a combination of positive functionals, then mimicking the
GNS construction for the positive functionals; see [1] for details.) Since
the cardinality of the *-algebra generated by f(X) U {¢(f)} over the
complex rationals is at most the dimension of Hy, we can assume that
the dimension of H, is at most the dimension of Hy. It follows that we
may assume H, = Hy. By (4) we know that n(¥(f)) = ¥(r o f), so

n((f) = (7(%(f))e, B) = (b(m o f)a, B).

Since 7 vanishes on C*(f(X)) we know that C*((mw o f)(X))a L 8. But
¥ € B(X) so¢(mof) is a strong limit of operators in C*((wo f)(X)), and
hence (7o f)a L B, contradicting n(¢(f)) # 0. Thus ¥(f) € C*(f(X)),
which proves (3).

(6) = (4) Assume that f € F(X, B(Hx)) and

™ C*(f(X) U{¥(f)}) — B(Hax)

is a representation. Let m = dim(Hy) . By replacing f with an element
of F(X, B(Hxy)) that is unitarily equivalent to a direct sum of m copies
of f, we can assume that f is unitarily equivalent to a direct sum of m
copies of f. Since 1 € B(X) we know that ¢(f) is unitarily equivalent
(same unitary) to a direct sum of m copies of (f). Let . denote the
identity representation on C*(f(X) U {¥(f)}). It follows from [8] that
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¢ is approximately equivalent to ¢ @ m, so there exists a net {Uy} of
unitaries such that
UXTUy — n(T)

for every T € C*(f(X) U {v(f)}). Hence U5 fUx — mo f in the point-
wise *-strong topology and, for every A, we have N fuy) = Nf - It
follows from (6) that (U5 fUx) — (m o f). However, ¥(Uy fUy) =
Usy(f)Ux — 7(¥(f)) in the x-strong operator topology. Hence m(1(f)
= (m o f) and (4) is established.

A consequence of Proposition 23 is that convergence in C{X’) happens
uniformly on bounded subsets of F(X, B(Hx)), i.e., on sets of the form

{feF(X,B(Hx)) :ng<n}.

In view of this the implications (1) < (2), (1) = (5) and (1) = (6) are
obvious. This completes the proof. O

Suppose T is a normal operator on a separable Hilbert space. It is
well-known that

1. C¥(T) ={¢(T) gb C — C a continuous function },
2. CY(T) ={é(T) : ¢:C — C a continuous function and ¢(0) = 0}.

The following result is a generalization of this fact and its extension
obtained in [6)].

PROPOSITION 25. Suppose f € F(X). Then

L C*(f(X)) ={d(f) :¢€C(X)},
2. G5 (f(X) ={8(f) :¢€C(X)and ¢(0) =0 }.

Proof. (1) Assume that T € C*(f(X)), and with no loss of generality
assume ||T’|| < 1. We can choose a polynomial pg such that ||po(f)|| <1
and ||T — po(f)|] < 3. Let ¢ be the truncation of pg by 1. Then
do € CX), |Ipo]] < 1 and ¢o(f) = po(f). Next choose a polynomial
p1 s [lp1(f)Il < 3 and so that ||T — ¢o(f) — pr(f)]| < §, and let ¢: be
the truncation of p; by 3. Then ¢; € Cx), llgnl| < 3 and ¢1(f) =
p1(f). Proceeding 1nductively, we can construct a sequence {¢,} in
CP(X) with ||¢n]| < & such that 3520 én(f) converges in norm to T
However, > o, ¢, converges in point-norm to an element ¢ € ch(x),
and it follows that ¢(f) = T. Thus we have that

CH(f(x)) S {e(f) : o €C(X) },

and the reverse inclusion is obvious from Proposition 24.
(2) This follows easily from (1). O
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One nice thing that the preceding proposition gives us is a way to
consider corresponding elements in C*-algebras. For example, if we are
looking at C*(S) and C*(T'), and we think of S as corresponding to
T, then 1 + 25 — 3i5*S® naturally corresponds to 1 + 2T — 3iT>T3.
However, a general element in C*(S) is ¢(S) for some ¢ € C(X) (here
X is a singleton) and the naturally corresponding element of C*(T') is
#(T). Furthermore, if 7w is a unital *-homomorphism from C*(S) to
C*(T) that sends S to T, then 7(4(S)) = ¢(T) for every ¢ € C(X).
This leads to the following generalization of corollary 3.2 in [6].

PROPOSITION 26. Suppose f,g € F(X). The following are equivalent:

1. there is a unital *~homomorphism = from C*(f(X)) to C*(g(X))
such that mo f = g,
2. for every ¢ € C(X) one has

¢(f) =0 = ¢(g) =0.

Proof. The implication (1) =(2) is obvious from the fact that 7(¢(f))
= ¢(mo f) for every ¢ € C(X). To prove the reverse implication, simply
define 7 on the generators by n(¢(f)) = ¢(g). Statement (2) implies
that 7 is a well-defined *-homomorphism. O

We next describe point-norm continuous linear functionals on C(X).

PROPOSITION 27. Assume T is a point-norm continuous linear func-
tional on C(X). There exists f € F(X) and o, € Hy such that

7(¢) = (¢(f)e, B)
for all ¢ € C{X).

Proof. Assume 7 is a point-norm continuous linear functional on
C(X). There exists M > 0 and g € F(X, B(Hx)) such that

IT(9)] < M||8(g)|

for all ¢ € C(X). It follows that the mapping ¢(g) — 7(¢) is a continuous
linear functional on the C*-algebra generated by g(X), so there exists a
representation 7 : C*(g(X)) — B(H) and vectors «, 8 € ‘H such that

7(¢) = (n(é(f))a, B).
Letting f = m o g and using Proposition 24 completes the proof. O

Although B{X) contains many projections, C{X) does not.

PROPOSITION 28. The only projections in C(X) are the constant 0
and constant 1 functions.
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Proof. Assume that ¢ € C(X) is a non-zero projection and define
fo: X — B(Hx)

to be the function that takes every z € X to the zero operator in B(Hx).
Now fp is a direct sum of constant zero functions fo : X — C. Since
o( fo) is a projection on a one dimensional space it must be either 0 or 1.
By Proposition 4 we know ¢(fg) is a direct sum of copies of ¢(fp), and
hence must either be the zero operator or identity operator in B(Hy).
Given any g € F(X, B(Hx)), the set

{rg :0<r<1}

is connected in the pointwise norm topology. By Proposition 24 we know
that
{¢(rg) :0<r<1}

is a norm connected subset of B(H x) that consists of projections. Hence
this set is a singleton, since it contains ¢(fo) which is either the zero
operator or the identity operator. It follows that ¢(g) = ¢(fo) for every
g € F(X,B(Hx)), so ¢ is either the constant 0 function or the constant
1 function. a

We now wish to consider elements in B(X’) that are continuous in
other topologies. We first need a few definitions. Suppose 21,...,2, € X
and let M be the set of all non* monomials in the variables 1, ..., Zn.
We define a noncommutative entire function ¢ to be a formal expression
of the form

¢ =apy+ Z amm

memM
such that, for every f € F({z1,...,2n}) (equivalently, for every f €
F(X)) the sum ¢(f) is norm convergent. This is equivalent to saying
that the sum )\, |om|m converges when z,...,z, are allowed to
take on arbitrary complex values. Recall that if H is a Hilbert space
and S C B(H), then AlgLat(S) is the set of all T € B(H) leaving
invariant every closed linear subspace left invariant by every element in
S.

PROPOSITION 29. Suppose ¢ € B(X). The following are equivalent:

1. ¢ is point-strong operator to strong operator continuous on bound-
ed subsets of F(X,B(Hx)),

2. ¢ is a noncommutative entire function in finitely many variables
from X,

3. ¢(f) € AlgLat(f(X)) for every f € F(X,B(Hx)),
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4. for every f € F(X,B(Hx)) and every invertible operator S €
B(HX):
$(S71fS) = 5718(f)S.

Proof. (1) == (3) Let m = dim(Hx). Suppose (1), and suppose
f e F(X,B(Hx)) and M € Lat(f(X)). We want to show that M €
Lat(¢(f)). By replacing f with a direct sum of m copies of f and M with
a direct sum of m copies of M, we can assume that dim(M) = dim(Hx).
By [12] we can choose a net {Ux} of unitaries from M onto Hy that
converge in the strong operator topology to the inclusion map from
M to Hy. It is easily shown that an operator T € B(Hy) leaves M
invariant if and only if UyTUy — T|p in the strong operator topology.
Thus, U5 fUx — f|u in the point-strong topology, which by (1), implies
Uso(f)Ux — ¢(f)|m, and it therefore follows that M € Lat(4(f)).

(3) = (2) It follows from (3) that for any f € F(X,B(Hx))

$(f)) = $(£) € AlgLat(£ (X)) = A,(f*) (%)),

where f(®) = f@ f @ .-+ and As(f(>) (X)) denotes the strong oper-
ator closed unital algebra generated by f (°°)(X ). It follows, for every
f € F(X,B(Hx)), that ¢(f) is a strong-operator limit of non* poly-
nomials in f. Let & denote the free unital semigroup generated by X,
let H = ¢%(S), and let f be the representation of X in the left regular
representation of S, i.e., for every z,y € § and h € H, we have

(f(z)h)(y) = h(zy).
Since the right regular representation of S is in the commutant of the
left regular representation, and since the unit e of S is a cyclic vector for
the right regular representation, e must be a separating vector for the

strong-operator closed unital algebra A generated by f(X’). We know
o(f) € A. Write

&(f)(e) = ace + Z Z a0,
n=10€Sy

where S, = A is the set of monomials of degree n. For each positive

integer N we know ¢(f & (Nf)) = ¢(f) @ ¢(Nf) € As([f ® (Nf)](X)),

and since e @ e is a separating vector, we must have

O(Nf) =ace+ Z Z N"az0.

n=10€S,

Since the coefficients must be square-summable for each N, and since
X is finite, it easily follows (from the Cauchy-Schwartz inequality) that
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aee+2ff=1 Zaeyn a0 defines a noncommutative entire function. Hence
PY(h) = ace+3 721 Y sy, 200 (h) defines an element of B(X) satisfying
(1).

Now suppose g is arbitrary and choose N > 2m max{||g(z)|| : z € X},
where m is the cardinality of X. If

p=cee+z Z CoO

n=1g€eX,

is any non* polynomial, we have
Il < feel + 32520 Eoe, leol (#5)"
IP(NAN 1+ 3720 e, (5)"]
ok

= |lp(NH (I [1+ 352 m™ (5)"]
< lp(NAIIV2.

It follows that the map m(p(Nf)) = p(h) extends to a linear map-
ping from A ((Nf)(X)) to As(h(X)) that is strong-operator to norm
continuous. Hence, it follows that A,((Nf @ h)(X)) is the graph of .
Since (N f) ® ¢(h) = ¢(Nf @ h) is in A;((Nf @ h)(X)), it follows that
¢(h) = m(¢(N f)) = n($(Nf)) = w(h).

(2) = (4), (2) = (1) These are obvious.

(4) = (3) Suppose M € Lat(f(X)) and let P be the orthogonal
projection onto M. Define a sequence {S,} of invertible operators by

=

IA A

Sn=P+l(1-P).
n

Clearly, S;1fS, — fP + (1 — P)f in point-norm, so {S;1fS,} is a
bounded sequence. Hence g = . S5-1fS, € F(X). Thus ¢(g) is a
bounded operator. However, by (4),

&b
$(9) = > S d(f)Sn,

which implies {S,1¢(f)S,} is bounded. But
(1= P)S; ¢(f)SnP = n(1 - P)o(f)P
implies (1 — P)¢(f) =0, or M € Lat{¢(f)). This proves (3). O

Suppose fo, fi, ... are arbitrary functions from C to C. Using a vari-
ant on the Lagrange interpolation polynomial we can, for any A = (F,n)
with F a finite subset of C and n € N, find a polynomial py so that

2P (2) = fu(2)
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for 0 < k < nand z € F. We therefore have a net {p)} of polynomials
such that,

() = fi(2)
for any z € C and any integer & > 0. Using the Jordan canonical form,

it follows that, for each finite complex matrix T, there is a matrix ¢(T")
such that

pA(T) — o(T).
However, the preceding theorem shows that if, for every operator T on 2
there is an operator ¢(T") such that px(T) — &(T) in the strong operator
topology, then fq must be entire and f,, = fén) for each positive integer
n. The preceding theorem answers two very natural questions. The
first is what happens when you complete the non* polynomials and the

second is what happens if you insist on preserving similarity rather than
unitary equivalence.

CoRrOLLARY 30. Suppose X is finite and P(X) is the set of non*
polynomials on X. Then the point-strong closure (completion) of P(X)
equals the point-x-strong closure (completion) of P(X') equals the point-
weak closure of P(X') equals the noncommutative entire functions.

Here is the analog of the preceding theorem for point-weak continuity.

PRrROPOSITION 31. Suppose ¢ € B(X) and ¢ (0) = 0. The following
are equivalent.

1. ¢ is point-weak to weak operator topology continuous on bounded
subsets of F (X, B (Hx)).
2. ¢ has the form

¢=>_ logz + Brzi]
k=1

where a1, 51,...,an,0, €C, and z1,...,7, € X.
3. ¢ is R-linear and ¢|F (X, C) is point-norm continuous on bounded
sets.

Proof. (2) = (1) This is obvious.
(1) = (3) Use the first paragraph of the original proof.
(3) = (2) Suppose z € X. We define 6, € F (X, B(B(Hx))) by

_J o ifz=y
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and, for T € B (B(Hx)), we define T4, by

@) w={ 3 izt

It is clear that, for each f € F (X, B(B(Hx))), that

Z f(z)ds

zeX

converges point-norm to f. It follows from the linearity of ¢ that

$(f) = ¢(f(z)8).

zeX

However, we can identify the elements of the form f(z)d, with the
elements of F ({z},B(Hx)) = B(B(Hx)), and ¢ with an R-linear map
¥ on B(B(Hyx)). If we restrict ¢ to C1, the R-linearity implies that
¥ (2) = azz + (%, and it follows that ¢ (D) = a,D + 3, D*. However,
the linear span of the diagonal operators (in fact operators of the form
P or iP with P a projection) is all of B (B(Hx)) (see [4]). Hence we
have

¢ (f (2)0z) = o f (z) + Bof ()"

Suppose there is a sequence z1, 2, . . . of distinct elements of X for which
|Gz, | + |8z, # 0, and choose A, € C such that, for each n,

> n.

> ar, Ak + B

k=1

Define f € F(X,B(B(Hx))) by f(zr) = X, for £ = 1,2,3,... and
f (z) = 0 otherwise. It follows that

¢ (f) = oa M + B,

k=1
but the sum does not converge. Hence the set of x € X such that
|cez| + |Bz| # 0 must be finite, say {z1,...,2,}. This implies (2). O

COROLLARY 32. If ¢ € B(X) is point-weak to weak operator contin-
uous then ¢ has the form

n
¢ =09+ Zazkmk + ﬂkxz
k=1



Noncommutative continuous functions 819

REMARK. If ¢,9 € C(X), it is easily seen that ¢ = ¢ if and only if
&(f) = ¥(f) for every irreducible f € F(X), since, given an arbitrary
f € F(X), there is a g € F(X) and a net {Ux} of unitaries such that
g is a direct sum of irreducible elements and U;gUy — f in the point-
*-strong topology. However, there is an A € F(X) such that h is a
direct sum of irreducible finite dimensional elements of F(X) and a -
homomorphism 7 on C*(h(X)) such that f = woh. Thus it follows that
¢ = ¢ if and only if ¢(f) = ¥(f) for every irreducible f € F(X) with
dimHy < oo.

5. Continuous part properties and ideals

We call a part class P in F(X) a continuous part class if there is a
family C C C(X) such that Ct = P, i.e., P is equationally defined by
a family of noncommutative continuous functions. We say that a part
class P is bounded if there exists n € N (X) such that ny < n for every
f € P. Note that a part class P is bounded if and only if there exists
f € P such that P = {f}*. Indeed, if P = {f}1L, then ng < ny for
all g € P, and if P is bounded we may take

f= b

gEF(X,B(Hx )P

The following result is the key to characterizing the bounded continuous
part classes.

PROPOSITION 33. Let £ be any convex subset of C(X). Then the
point-norm closure of L in C{X) is equal to L NC(X), where L denotes
the point strong closure of £ in B(X) (which is the same as the point
x-strong closure).

Proof. We must prove that £NC(X) is contained in the point-norm
closure of £ (the opposite inclusion is trivial). Assume that 7 is any
point-norm continuous functional on C(X). Thus there exists f € F(X)
and o, 8 € Hy such that

7(¢) = (¢(f)a, B)

for all ¢ € C(X) (by Proposition 27). If $ € LNC(X) and {py} is a
net in £ converging point strongly to ¢, then 7(¢) = limy{éx(f)a, B8) is
in the closure of 7(£). Thus ¢ is in the point-norm closure of £ by the
Hahn Banach theorem.



820 Don Hadwin, Llolsten Kaonga and Ben Mathes

The fact that the closure of £ in B(X) is the same relative to either
the point strong or point *-strong topologies is also a consequence of the
Hahn-Banach theorem and Proposition 14. O

PROPOSITION 34. Assume that T is a point-norm closed ideal in C{(X’).
It follows that T = It NC(X). In particular, there is a one to one cor-
respondence between continuous part classes, point-norm closed ideals
in C{X), and strongly closed ideals J in B(X) that have J NC{(X) point
strongly dense in J.

Proof. The fact that T = Z1+ N C(X), which was proved in Proposi-
tion 33, ensures that the mapping Z — Z1+ is injective. O

COROLLARY 35. Point-norm closed ideals in C(X) and point strongly
closed ideals in B(X) are *-ideals.

COROLLARY 36. If C C C(X), then the point-norm closed ideal in
C(X) generated by C is C*1+ NC{X).

PROPOSITION 37. Suppose P is a bounded part class in F(X). The
following are equivalent:

1. P is a continuous part class,

P is closed under pointwise norm limits,

P is closed under approximate equivalence,

P is closed under pointwise *-strong limits,

‘P is closed under representations; i.e., if f € P and

m: C*(f(X)) — B(H)

is a unital representation of C*(f(X)), thenmo f € P,
6. there exists f € F(X) such that

P ={w(f) : 7 a unital representation of C*(f(X)) }.

Proof. (1) = (2) follows from Proposition 24, and (2) = (3) is clear.

(3) = (4) We will use the non-separable extension of Voiculescu’s
theorem given in [8], for which we need to write rank T to indicate the
dimension of the closure of the range of an operator T. Assume that
{fa}rer is a net in P that converges point *-strongly to f. If m denotes
the dimension of Hy and if g = @, , fﬁm), then for every p € P(X) we
have

G N

(NI < Slf\P”I’(fA)H = |lp(9)l-

It follows that there is a unital representation of C*(g(X)) that maps
every g(z) to f(z). If this representation is summed with the identity
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representation we obtain, for each ¢ € C(X), the unital representation

d(g) ™ B(f) @ ¢(g).

It is clear that rank ¢(g) < rank (¢(f) @ ¢(g)), and Proposition 26 (2)
together with the choice of m ensures that rank ¢(g) > rank (¢(f) ®
#(g)) for every ¢ € C(X). We now have that rank n(T) = rank T for
every T € C*(g(X)), so m is approximately equivalent to the identity
representation by theorem 3.14 of [8]. Sincege P and mog= f@ g is
approximately equivalent to g, our hypothesis in (3) gives us fd g € P,
and hence f € P.

(4) = (5) First notice that (4) = (2) is trivial, so we have already
established the equivalence of (2) through (4). Hence it is enough to
prove that (3) = (5) . Assume that f € P and 7 : C*(f(X)) — B(H)
is a unital representation. Let m denote the cardinality of H. If id
denotes the identity representation of C*(f(X)) , then as in the previous
paragraph we see that id™) is approximately equivalent to id™ @ .
It follows that f(™ is approximately equivalent to f(™ & (mo f), so
f™ & (w0 f) € P by the hypothesis in (3), and mo f € P as desired.

(5) = (6) Choose any f € F(X) such that P = {f}*+. By the
hypothesis in (5) we see

{7(f) :m a unital representation of C*(f(X)) } C P,
and a direct verification using Proposition 8 (2) reveals that
{m(f) :7 a unital representation of C*(f(X)) }
is itself a part class containing f, hence
P = {f}t*+ C {#(f) :~ a unital representation of C*(f(X)) }.
(6) = (1) Assume that
P ={xn(f) : 7 a unital representation of C*(f(X)) }.

We intend to prove that P = ({f}+ NC(X))*, so assume g € ({f}+ N
C(X))*L. Tt follows that for every ¢ € C(X) one has

¢(f) =0 = ¢(9) =0,
hence
g € {m(f) :m a unital representation of C*(f(X)) }
by Proposition 26 (2). Thus the inclusion
{fHnex)tcp



822 Don Hadwin, Llolsten Kaonga and Ben Mathes

is established, and since the opposite inclusion follows from Proposi-
tion 16 and

{fHnex) c{n

our proof is complete. O

LEMMA 38. If X is finite, then every point-norm closed ideal in C(X)
is singly generated.

Proof. Since X is finite, the point-norm topology on C(X) is given
by countably many seminorms, and is hence metrizable. Also the set of
polynomials with coeflicients in Q + ¢Q is a countable dense set. Hence
every closed ideal 7 of C(X’) is separable. Choose a dense sequence {¢x}
in Z, and define

¢k¢k
9= Z 2k[1 + dy)?

where di, = sup{||¢(f)|| :Vz € X ng(z) <k}. Clearly, ¢ € Z and
{o}t+ = {¢1, ¢2,...}+ = I+. Thus the ideal generated by ¢ is {¢p}*++ =
T+ = [

The following proposition, which is a consequence of the preceding
two results, illustrates the need for a characterization of unbounded con-
tinuous part classes analogous to the one in Proposition 37 for bounded
part classes.

PROPOSITION 39. Assume X is finite. Then every continuous part
class has the form {¢}* for some ¢ € C{X).

Since part classes correspond to central projections in B{X), it follows
that part classes form a complete Boolean algebra. If P and Q are
part classes, then P’ = {fe F(X) : fLP}, PAQ =PnNQ, and
PvO={feF(X) :f<PUQ} Inother words, f € PV Q if and
only if f € PUQ or f is a direct sum g & h with g € P and h € Q.
It is clear that if P and Q are continuous part classes, then PN Q is a
continuous part class. However, it is not so clear that the same is true
for P v Q. However, we can at least say the following. (The proof is
essentially the same as the one in [10] and is omitted.)

PROPOSITION 40. Suppose X is countable and P and @ are bounded
continuous part classes. Then PV Q is a bounded continuous part class.
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6. Generators and relations

There are many cases in which C*-algebras are defined in terms of
generators and relations. This can be tricky business since the relations
cannot be arbitrary. Suppose we let X denote the generators and R
denote the relations, and we let C*(X : R) denote the C*-algebra gen-
erated by X subject to the relations R. There are two versions of this
problem, one in the category of nonunital C*-algebras, and one in the
category of unital C*-algebras. We use the notation C§(X : R) for the
nonunital version and C*(X : R) for the unital version. What we want
is that if f € F(X) and f satisfies the relations in R, then f extends
uniquely to a *-homomorphism 7y from C§(X : R) into B(Hy) (we in-
sist that m; be unital when we are dealing with C*(X : R)). What are
the conditions on R to make this construction work?

First of all the relations must imply that each of the generators has a
finite norm. Thus, for example C*({z} : z = «*) is not well defined. This
trickiness even foils the experts, e.g., in [18, p.25] it is mentioned that
the relation z > 0 can be obtained by insisting z = z*, adding another
generator y and adding the relations y = y* and y? = z. However, the

latter relations are represented by z = < (1) (1) ) and y = ( _01 ? >’

but y is not in the C*-algebra generated by x. To make this trick
work, we must add a sequence {y,} of new generators, assumed to be
selfadjoint so that y? = z and y2; = yn for n > 1.

The real question is: what is an acceptable relation? Are the relations
“l|z|| < 1 and z is nilpotent” or “||z|| < 1 and the spectrum of z is {0}”
acceptable? It turns out that these, by themselves, are not acceptable
relations. If CJ(X : R) actually makes sense, then there must be a
faithful representation = of Cj(X : R) on some Hilbert space H. Then
f =mlx € F(X). Moreover, if g € F(X), then g satisfies the relations
in R if and only if there is a *-homomorphism p : C§(X : R) — B(H,)
such that po f = g. It follows that the class P of all g € F(X) satisfying
the relations in R is precisely

{pof :pisaxhomomorphism on Cj(f(X)) }.

It follows from the preceding section that P is a bounded continuous
part class. Hence there is a point-norm closed ideal Z of C(X) such that
P = I+ NCy(X). Hence the relations in R can be expressed in terms of
equations involving noncommutative continuous functions. We now can
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define what a relation is, namely, an equation

where ¢ is a noncommutative continuous function. If we are in the
nonunital case, we only need to use relations involving ¢’s for which
#(0) = 0. Note that an inequality ¢(f) > 0 can be expressed as [(qﬁ*q&)% -
#](f) = 0 and a relation ||¢(f)}| < 1 can be written [1 — ¢*@](f) > 0, or

(11— ¢* 127 — [1 - ¢*¢l](f) = 0.

To check whether relations are really acceptable, given that they im-
ply the norm boundedness of the generators, it is sufficient to check
any of the conditions in Proposition 37 on the representations of the
relations. For example, if J, is the n x n nilpotent Jordan block, the
direct sum J of all the J,’s is not nilpotent; in fact the spectrum of J
is the closed unit disk. Thus “z is nilpotent” or “the spectrum of x is
{0}” are not acceptable relations since the class of representatives is not
closed under direct sums. Another way we could eliminate these bogus
relations is using the fact that the set of nilpotent operators on £2 is
not norm closed [14]. Thus the determination of which “relations” are
acceptable and which are not depends on a knowledge of single operator
theory.

We summarize the remarks in the preceding paragraph in the follow-
ing proposition. We call a collection K of noncommutative continuous
functions null bounded if there is an element n € N'(X) such that ny <n
for every f € Kt

PROPOSITION 41. A family R of relations on the variables X has
the property that there is a universal unital C*-algebra generated by
X subject to the family R of relations, if and only if there is a null-
bounded subset K C C{X) such that, for every f € F(X), the following
are equivalent:

1. f(X) satisfies the relations in R,
2. ¢(f) =0 for every ¢ € K.

Hence the relations in R can be reformulated as
¢=0forall p € K.

In the case when X is finite it is always possible to take the set R to
be a single relation. In other words, every finitely generated C*-algebra
is finitely presented.
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COROLLARY 42. If X is finite, then every acceptable family R of
relations on X can be expressed as a single equation

¢(f) =0

for some null-bounded noncommutative continuous function ¢.

It turns out that every C*-algebra can be defined by generators and
relations.

PRroPOSITION 43. Suppose A is a unital C*-algebra generated by a
subset X. Let

P={feF(X) : [ is the restriction of a representation of A to X }.

Then the identity mapping on X extends to a x-homomorphism from A
to C*(X : PL).

7. Stable relations

In the previous section we saw that relations can be expressed in
the form ¢(f) = 0, where ¢ is a noncommutative continuous function.
Thus we can identify each set of relations with a set of noncommutative
continuous functions. If R = {¢1, ¢o, ..., ¢} is a set of noncommutative
continuous functions (considered as relations), we say that an f € F(X)
is a representation of R if ¢;(f) =0for 1 <j<k.If6>0, wesay fis
a 0-representation of R if ||¢;(f)|| < édfor 1 <j<k.

Stable and weakly stable relations are defined and studied by T.
Loring [18] (based partly on his previous work [15],[16],[17] where the
terminology is somewhat different). Since relations are given by non-
commutative continuous functions, we will translate Loring’s terminol-
ogy into our framework. Suppose X is finite. We call a finite family
R = {¢1,d2,.-.,¢r} of noncommutative continuous functions weakly
stable in the category of nonunital C*-algebras if, for every pair of pos-
itive elements n,e € N(X) there exists a positive number § > 0 such
that if f € F(X), ny < n, and f is a §-representation of R, then there
is a representation g of R such that

L g(X) C G5 (f(X)),
2. ny_g < € (recall that this means ||f(z) — g(z)|| < e(z) for all
z€EX).
What this condition says is that every f that is bounded by n for
which (¢1(f), ¢2(f),-..,dx(f)) is small may be approximated by a g
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whose values are in Cj{(f(X)) such that (#1(g),#2(9), ..., ox(g)) =
(0,0,...,0).

As in [9], we can show, in terms of noncommutative continuous func-
tions, that the choice of g above can be made in a canonical and con-
tinuous way. Note that the condition on g requiring g(X) C C§(f(X)),
implies that, for each z € X, there is a noncommutative continuous func-
tion 9 (depending on z, €, n, and f) with ¢(0) = 0 such that g(z) = ¥(f).
We show that the weak stability condition actually gives us the function
1 independent of f.

PROPOSITION 44. Suppose X is a finite set and R = {¢1, ¢2,...,dr}
C Co{X). We have that R is weakly stable if and only if for every pair
n, € of positive elements of N'(X) there exists a § > 0 and a subfamily

{’lﬁn,é,z rxeX } C C()(X)
such that whenever f is a d-representation of R and ny < n, then

g(a:) = wn,e,z(.f)

for x € X, defines a representation g of R with ny_g4 < e.

Proof. To prove the non-trivial implication, assume that R is weakly
stable. Let f be the direct sum of all the f € F(X, B(Hx)) such that
ny < n and f is a d-representation of R. Then n F<n and f is a
d-representation of R. Thus, since R is weakly stable, there is a rep-
resentation § of R such that §(X) C CZ(f(X)), ng s < e It follows
from Proposition 25 that, for each x € X, there is a noncommutative
continuous function ¥, ., € Co{X) such that §(z) = ¥nc(f). Since
every J-representation f of R with ny < n has the form f = 7o f
for some representation m of Cg(f(X)), it follows that the definition
9(x) = Yn ez (f) for each z € X is the same as g = 7o g, which gives the
desired conclusion. O

Weak stability can also be stated in terms of sequences. From this
viewpoint one sees that the set R = {¢1,d2,...,dr} is weakly stable
if, for every bounded sequence {fn,} in F(X) such that ||¢(fm)]| — O
for each ¢ € R, there is a sequence {g,,} that is eventually in R+
such that g,,(X) C C§(fm(X)) for each m = 1,2,..., and ny, 4, — 0
pointwise. This sequential statement leads to a formulation of stability
in terms of certain liftings, and proves that stability is independent of
the representative relations. Given a sequence {A,} of C*-algebras,
we let C(3,-_; Am) denote the C*-algebra [[or_; Am/ > oe_; Am. Let
n: i Am — C(3o_; Am) denote the quotient map.



Noncommutative continuous functions 827

PROPOSITION 45. Suppose X is finite and R is a finite subset of
Co(X). The following are equivalent:

1. R is weakly stable,

2. for every sequence {Am} of C*-algebras and every element f :
X — C(Oor_1 Am), there exists g = {gm} : X = C(Q ey Am)
such that f(x) = n(g(z)) for all x € X and such that, eventually
#(gm) = 0 for every ¢ € R,

3. for every positive n € N (X), every sequence { A, } of C*-algebras,
and every *-homomorphism

m:Cy(X:R,nxy <n)— C(Z Am),
m=1

there exists an N and a x-homomorphism
o0
p:Cy(X :R,ny <n)— H Am
m=N

such that m =nop.

The definition of stability of relations is more complicated. The
subset R = {¢1,92,...,¢r} of Co{X) is stable if, for every positive
e,n € N(X) there is a § > 0 such that: given C*-algebras A and B, a
surjective homomorphism 7 : A — B and a §-representation f: X — A
of R with ny < n, such that 7 o f is a representation of R, there is a
representation g : X — A of R with ng_y <€, such that o f =7og.

Weak stability says, given a positive n,e € N (X) there is a contin-
uous formula that transforms any é-representation f of R with ny <n
into an actual representation of R that is within ¢ of f. Stability says
that this continuous formula has the additional property that it fixes
representations h of R with np, < n. This, in turn is equivalent to being
able to find a formula that only depends on n.

PROPOSITION 46. Suppose X is finite and R = {¢1,¢2,...,¢x} C
Co{X). The following are equivalent:
1. R is stable,
2. for every positive elements n,e € N (X) there exists a family
{Vnez 12€ X} CCo(X)
and a 6 > 0 such that
(a) if f is a 0-representation of R and ny < n, then
g(ac) - 1/)n,e,ac(f)

for x € X, defines a representation g of R withny_g <,
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(b) ifh is a representation of R with ny, < n, then h(x) = ¥y« (f)
for every x € X,
3. for every positive element n € N(X) there exists a family

{wn,m rrxeX } C Co(X)
such that, for every positive € € N'(X) there is a § > 0 such that
if f is a d-representation of R and ny < n, then
9(x) = Yna(f)
for x € X, defines a representation g of R with nf_g <€

The last theorem gives us an easy way to construct examples of rela-
tions that are weakly stable but not stable (see [19]).

COROLLARY 47. Suppose K is a compact nonempty subset of R, and
¢ : R — R is defined so that ((t) is the distance from t to K. Let
X = {z}, and let R be the relations ¢ = z* and ((¥t£) = 0. Then R
is weakly stable, but R is stable if and only if K has only finitely many
connected components.

Proof. Since any approximate representation T of R must be close
to ReT’, we need only check the weak stability (respectively, stability)
conditions for hermitian elements. However, a hermitian operator T
is a d-representation of R if and only if o(7T) is contained in the 4-
neighborhood Us = (~1((0,d)) of K. Hence weak stability is equivalent
to the statement that, for each € > 0 there is a § > 0 and a continuous
map 7 : Us — K such that |t — y(¢)| < € for all t € Us. This is true for
every K. However, stability requires that, in addition, the function vy
satisfies y(t) =t for all t € K, and this is equivalent to K having finitely
many connected components. O

We say a subset R = {¢1,02,...,¢r} of Co(X) is strongly null-
bounded if there is a §p > 0 and an ng € N(X) such that ny < ng when-
ever f is a dp-representation of R. Note that strong null-boundedness
depends on the relations, for example the relations z = z* and ||z|| < 1
are equivalent to the relations x = z* and ¢ (Ei'z-z—*) =0, where (: R — R
is a function in Cp(R) such that ¢(~({0}) = [~1,1], and also equiv-
alent to z = z* and &(Z4HZ) = 0, where ¢ : R — R is the function
£(t) = max{0, |t| — 1}. The last relations are strongly null-bounded, but
the second ones are not.

COROLLARY 48. Suppose R = {¢1,¢2,...,¢r} is a strongly null-
bounded subset of Co(X). Then R is stable if and only if there is a
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family
{Yg 1z € X} CCy(X)

such that, for every positive € € N'(X) there is a § > 0 such that, for
every d-representation f of R,

9(z) = ¥s(f)
for x € X, defines a representation g of R withny_g <.

All of the preceding results in this section are for weak stability and
stability for relations in the category of nonunital C*-algebras. If we
wish to consider the unital case, all of the results in this section remain
true in the unital case if Co(X) is replaced with C{X).

In [18] T. Loring characterized stability and weak stability in terms of
lifting properties, which implies that two finite null-bounded families of
relations that generate the same universal C*-algebra are either both sta-
ble (respectively, weakly stable) or both not. Hence stability and weak
stability are properties of the C*-algebras. Since every finitely generated
C*-algebra can be defined by a single relation ¢(f) = 0, stability and
weak stability makes sense for all finitely generated C*-algebras.

In [18] T. Loring showed that Cy(0, 1] is stable. If X = {z}, ¢1(z) =
r*z? —z, ¢o(z) = za*zr — 2, R = {¢1, ¢2}, using arguments like the ones
in [18] (i.e., looking at irreducible representations of R), it is easy to see
that C§(z, R) is isomorphic to Cj(S ®0), where S is the unilateral shift
operator on #2. With a little more work, it can be shown that R is stable.
On the other hand, again by considering irreducible representations, it
can be shown that Co(0, 1)@ C§(S®0) is isomorphic to C§(P&®S), where
P is a positive operator with spectrum [0, 1], S is the unilateral shift op-
erator, and P& is the spacial tensor product. However, it is well known
[2] that C5(P & .S) is isomorphic to C}({z} : z(z*z) = (z*z)z, ||z|] < 1)
(i.e., = is a quasinormal contraction). However, quasinormality, like
normality is highly nonstable. No Fredholm quasinormal operator can
have positive index. For each positive integer n let T;, be the adjoint
of the unilateral weighted shift whose weights are {min{1, %} c k> 1}
Then each T, is a compact perturbation of the adjoint of S, so the
distance from T, to the quasinormal operators is at least the distance
from T,, to the operators with non-positive index; which is 1. How-
ever, {|TxT, — T, T,¥|]| — 0, which means that asymptotically T, is a
d-representation of Ri. Thus Cy(0,1] ® C3(S & 0) is not weakly stable.
Hence no version of stability is preserved under tensor products.
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